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Abstract. Machine Learning as a Service (MLaaS) is often provided as
a pay-per-query, black-box system to clients. Such a black-box approach
not only hinders open replication, validation, and interpretation of model
results, but also makes it harder for white-hat researchers to identify vul-
nerabilities in the MLaaS systems. Model extraction is a promising tech-
nique to address these challenges by reverse-engineering black-box mod-
els. Since training data is typically unavailable for MLaaS models, this
paper focuses on the realistic version of it: data-free model extraction.
We propose a data-free model extraction approach, CaBaGE, to achieve
higher model extraction accuracy with a small number of queries. Our
innovations include (1) a novel experience replay for focusing on difficult
training samples; (2) an ensemble of generators for steadily producing
diverse synthetic data; and (3) a selective filtering process for querying
the victim model with harder, more balanced samples. In addition, we
create a more realistic setting, for the first time, where the attacker has
no knowledge of the number of classes in the victim training data, and
create a solution to learn the number of classes on the fly. Our evaluation
shows that CaBaGE outperforms existing techniques on seven datasets—
MNIST, FMNIST, SVHN, CIFAR-10, CIFAR-100, ImageNet-subset, and
Tiny ImageNet—with an accuracy improvement of the extracted models
by up to 43.13%. Furthermore, the number of queries required to extract
a clone model matching the final accuracy of prior work is reduced by
up to 75.7%.

1 Introduction

MLaaS [25] has seen rapid growth, where a provider offers limited access, e.g.
via Application Programming Interfaces (API), to a machine learning system
at a cost. This is known as a pay-per-query system [12]. Many MLaaS systems
are black-boxes to the clients. For example, the clients have no knowledge of the
model architecture, training method, or the data used to train the model.

Thus, research results built on top of black-box MLaaS models could be dif-
ficult to reproduce, validate, or interpret, which harms scientific development.
In addition, it is hard for white hat researchers to identify vulnerabilities and is-
sues in such deployed black-box models. These problems faced by MLaaS clients
incentivize the development of model extraction techniques [12, 26, 27, 31], i.e.,
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techniques that steal the MLaaS models. Such models can be used for reconnais-
sance to launch further attacks [24,28].

Existing research focuses on learning-based model extraction [26, 27, 31, 36],
the process of using only information gained by querying a black-box model, the
victim, to train a machine learning system, the clone, for application on the same
task. However, the victim training data is often inaccessible, and constructing a
surrogate dataset for training is a difficult and expensive task [31]. This prompts
researchers to borrow ideas from Generative Adversarial Networks (GAN), and
use generative models to generate synthetic data for querying the victim model.
In this paper, we follow this generative approach and assume the following con-
straints to make the extraction process “data-free”. First, the attacker knows
only the victim’s input data format and has no further information pertaining
to the training data or the target system. The second assumption is that the
attacker has no access to any data that can be used in a comparable format for
evaluation or training purposes.

Since data-free model extraction is a difficult problem, much of the prior work
has focused on more accessible variants of the problem. These often involve either
high (≥ 8 million) query budgets or the assumption that the target model offers
exact model confidence values, known as soft-label (SL) extraction [14,26,27,31].
Yet, in a pay-per-query system, a high query budget means the technique is
prohibitively expensive or impractical. Additionally, any attack relying on exact
model confidence values can be countered by the trivial defence of giving only the
top-1 or top-k label predictions. To address the countermeasure of providing only
the top-k label predictions, previous studies [26, 27, 36] have adopted hard-label
(HL) extraction, where the victim model returns only the top-1 label prediction.
Prior papers make the assumption that the total number of classes is known.

To make the extraction as realistic as possible, our extractor for HL extraction
is assumed to have no knowledge of the number of classes, and must learn the
number of classes in the target domain. This class-agnostic setting is a stricter,
i.e., more realistic, assumption than the class-aware setting used by prior work.
To the best of our knowledge, this is the first work where the attacker knows
only the input data format (i.e., images and their dimensions) and the general
goal of the task, in this case, image classification.

We propose a novel, data-free model extraction approach—CaBaGE—that
combines three key techniques: class-balanced difficulty-weighted replay, gen-
erator ensemble, and selective query. Class-balanced difficulty-weighted replay
balances the class distribution of the replayed samples and leverages priority
sampling to keep the most difficult samples when the memory is full. Genera-
tor ensemble uses an ensemble of generators with increased generator training
iterations to generate more diverse data in data-free model extraction. Selective
query is a filtering process to select balanced samples to query the victim.

This paper answers three key questions:

1. Does CaBaGE achieve a higher accuracy than existing approaches?
2. Does CaBaGE achieve a higher query efficiency than existing approaches?
3. How do each of CaBaGE’s novel components contribute to the results?
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Our work makes the following contributions:

– We propose a novel data-free model extraction approach CaBaGE that com-
bines three key techniques: class-balanced difficulty-weighted replay, gener-
ator ensemble, and selective query. CaBaGE generates and selects more di-
verse, balanced, and higher-quality data for data-free model extraction to
achieve higher extracted accuracy with fewer number of queries.

– We create a realistic class-agnostic setting, for the first time, where the
attacker has no knowledge of the number of classes in the victim training
data, and must instead learn the number of classes on the fly. CaBaGE
adaptively modifies the prediction head of the clone models based on the
labels obtained from querying the victim model. For all HL evaluations in this
paper, CaBaGE uses the more challenging, realistic class-agnostic setting,
while existing work uses the class-aware setting.

– Our evaluation shows that in limited-budget settings, CaBaGE outperforms
the State-of-The-Art (SoTA) techniques, DisGUIDE and IDEAL, on all
seven datasets—MNIST, FMNIST, SVHN, CIFAR-10, CIFAR-100, ImageNet-
subset, and Tiny ImageNet. On simpler datasets such as MNIST, FMNIST,
and SVHN, CaBaGE improves the final accuracy by up to 43.13%, 37.09%,
and 9.04% respectively. On the more complex datasets, CIFAR-100 and Im-
ageNet subset, CaBaGE achieves 11.10% and 26.23% gains in final accuracy.

– For a fair comparison with DisGUIDE, we also evaluate CaBaGE following
DisGUIDE’s extraction configuration, which assumes a higher query budget.
In this setting, CaBaGE’s HL extraction performance outperforms the best
final accuracy of DisGUIDE on CIFAR-10 and CIFAR-100 by 1.35% and
5.73%. In the SL setting, we observe similar gains, improving final accuracy
by 0.34% and 6.49% on CIFAR-10 and CIFAR-100 models respectively. Most
significantly, CaBaGE achieves a leap in accuracy to reach 75.96% out of a
77.52% victim, on CIFAR-100 in the SL setting.

2 Related Work

2.1 Model Extraction

In the context of machine learning, model extraction is a class of attacks whereby
an adversary with black-box access to a machine learning system seeks to obtain
valuable information of the model, which includes: training hyperparameters,
learned parameters, or an approximation of the model with a high agreement
over relevant input spaces [23,30].
Data-Free Model Extraction: In a more challenging scenario of model extrac-
tion, the authors of DFME [31] assume that adversaries have no access to initial
training data. Instead, DFME trains a substitute (clone) model on synthetic data
generated by a GAN-like mechanism, and queries the target model for class pre-
dictions to serve as proxy labels. Since the victims are black-box models, DFME
employs a forward differences method to approximate the necessary gradients
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for clone training. However, this approach requires many queries to estimate gra-
dients, and suffers in HL extractions. Subsequent studies including DFMS [27],
DisGUIDE [26], and IDEAL [36] have expanded on DFME’s work. DFMS pro-
poses training a GAN to emulate synthetic or real data while maximizing clone
label confidence entropy. DisGUIDE introduces the use of replay methods and
utilizes a generator training loss that calculates the difference in clone models’
prediction to make queries more efficient. IDEAL pushes model extraction fur-
ther towards low query budget settings by querying generated samples with the
highest clone confidence.

2.2 Model Distillation

Model distillation, also known as knowledge distillation, refers to the transfer
the knowledge from a teacher model to a smaller student model [7, 9]. Different
from model extraction, there is typically white-box access to the teacher model
and the emphasis is often on the performance relative to parameter size of the
resulting trained model or the amount of arithmetic operations required in the
training process. This differs from model extraction, where the attacker only has
black-box access to the victim and aims to reduce the number of victim queries
to reach high fidelity or accuracy in the targeted domain [12].
Data-Free Model Distillation: In the assumption that the teacher’s train-
ing data is not accessible, i.e., data-free, some existing works aim to capture
the distribution of teacher training data by using information stored in teacher
model’s layers [20,34]. Other newer approaches borrow ideas from GANs—using
a generator to produce training data where the generator’s goal is to maximize
the disagreement between the teacher and student [4, 21]. These approaches at-
tempt to explore and map out the decision boundaries of the teacher to more
effectively train the student by querying on the decision boundary. Data-Free
Model Extraction borrows these newer ideas, using synthetically generated data
to transfer the knowledge of the victims to clones.

2.3 Ensemble Learning

Ensemble methods can improve the generalization of neural networks and reduce
the high variance properties of the models [5]. The general simplicity in imple-
mentation and overall improvement of Ensemble Learning methods has resulted
in their use across many different machine learning and deep learning fields [35].
Ensemble Learning in Adversarial-Learning: Prior work shows that train-
ing a GAN with an ensemble of generators improves performance and the diver-
sity of the generated outputs [6,10]. Existing work in data-free model extraction
also utilizes the concept of ensemble learning. Rosenthal et al. leverage an en-
semble of clones to improve the stability of clones prediction [26]. Others deploy
two generators as an ensemble and optimize the disagreement of the generator
outputs, trying to boost the diversity of the generated outputs [33]. In contrast,
CaBaGE does not directly compare generator outputs, but relies on the joint
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Fig. 1: Overview of CaBaGE. Our three novel components are colored in yellow.
CB-DW Replay is the Class-Balanced Difficulty-Weighted Replay.

optimization process to incentivize ensemble diversity implicitly. In addition, our
approach has a negligible increase in computational cost (details in Sec. 3.1).

3 Approach

Fig. 1 is an overview of CaBaGE. CaBaGE’ three novel components are high-
lighted in yellow: Generator Ensemble (Sec. 3.1), Selective Query (Sec. 3.2), and
Class-Balanced Difficulty-Weighted Replay (Sec. 3.3). We build CaBaGE upon
the foundational method introduced by DisGUIDE [26]. In DisGUIDE, an at-
tacker trains a generator and two clones in an adversarial-like setting and the
final extracted model is derived from the ensemble of the clones.

Similar to DisGUIDE, CaBaGE’s extraction process is composed of two
phases, shown in Fig. 1: (1) Clone Training, and (2) Generator Training. Within
the given query budget, CaBaGE cycles between these phases. Before entering
any phases, CaBaGE’s extraction process starts by initializing the generator en-
semble and the clone ensemble from random weights. Afterwards, CaBaGE op-
timizes the generator ensemble’s weights in the Generator Training phase, while
keeping the clone ensemble’s parameters frozen. Conversely, the Clone Training
phase updates the clone ensemble while keeping the generator ensemble fixed.

The Clone Training phase has two stages. First, we apply Selective Query,
our proposed filtering technique, to generate samples and select a final batch
to query the victim with. The clones then use these samples and the returned
labels for training. The samples and labels are then stored in the Class-Balanced
Difficulty-Weighted Replay. In the second stage of Clone Training, we sample
from the Class-Balanced Difficulty-Weighted Replay and train the clones without
querying the victim. We introduce three key improvements in CaBaGE:

1. Generator Ensemble: We propose to train an ensemble of generators instead
of a single one. Ensembling the generator prevents mistakes in a single gen-
erator from poisoning the sole source of data for the extraction. Compared
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to the single generator approach used in DisGUIDE, our proposed solution
requires neither additional queries to the victim nor extra computation.

2. Selective Query : During Clone Training, we propose a strategy for choos-
ing harder, class-balanced samples to query the victim with. This helps to
improve the stability of the extraction without increasing the query budget.

3. Class-Balanced Difficulty-Weighted Replay : Prior work generally fails to ef-
ficiently utilize the replay method, which is crucial in the DFME context
where our only data sources are those we have queried. We thus propose an
improvement to the replay memory of prior work [26], by both balancing the
class distribution of returned samples and keeping more difficult samples for
the clones as memory fills up.

3.1 Generator Ensemble

To prompt diversity in the generated data and a more stable extraction per-
formance in the DFME-HL setting, we propose the use of generator ensembles.
Traditionally, only a single generator G is used to capture the entire data dis-
tribution pdata. Instead, we propose the use of GE , an ensemble of n generators
{G1, G2, . . . , Gn}, to capture the data distribution. In this approach, for a batch
of data samples B to be generated, each sample within the batch will be as-
sociated with an index and is denoted by xi. The batch is partitioned into n
sub-batches such that each generator Gj in the generator ensemble GE is re-
sponsible for generating samples corresponding to the indices in Sj , its assigned
sub-batch. The batch size remains fixed irrespective of generator ensemble count.
Formally, if Sj represents the set of indices assigned to Gj , then xi, the image
output of Gj for a corresponding input noise vector zi is:

xi ← Gj(z) for i ∈ Sj (1)

Each time CaBaGE enters the generator training phase, the whole generator
ensemble is trained by one batch. Within this batch, each generator model Gj

is trained to maximize both the diversity and clone ensemble disagreement on
its own generated image data, {xi}i∈Sj

.
We note that the diversity of the generated data is a global objective shared

between ensemble members. If one generator creates too many instances of a
given class, other ensemble members can compensate by creating fewer instances
of that class. On the other hand, the clone ensemble disagreement on a given
sample is independent of other samples in a given batch.

During Clone Training, all generator outputs are combined to produce a full
image batch of size |B|, where |B| / n images are produced by each generator
in the ensemble. Due to this design, our ensembling approach incurs no extra
computational cost in the forward and backward propagation.

This approach benefits from two advantages:
Specialization: Each generator specializes in a subset of the data distribution,
reducing the complexity of what individual generators must learn.
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Diversity : Multiple generators may enhance the ability to cover the full targeted
data distribution and help to mitigate the risk of mode collapse, a common
problem faced by GAN-like methods.

3.2 Selective Query

To query the victim with more challenging images in Clone Training, we intro-
duce a selection process for newly generated data, Selective Query. This method
is based on the belief that querying the victim with diverse and difficult samples
benefits clone training. Selective Query is a three-step process:

1. Oversampling : Generators produce multiple batches of images.
2. Evaluation: The clone ensemble evaluates every sample in the over-sampled

data pool. Two primary metrics are computed for each input based on these
outputs: The ensemble disagreement loss and the class label.

3. Selection: Select an equal number of images from each class, determined by
its predicted class label using the averaged class probabilities of the clones,
prioritizing those with the highest disagreement loss. This ensures the final
selected data is balanced and challenging.

Problems arise when limited or no data generated is predicted to be of certain
classes. To address this situation, missing samples are replaced in two steps. First,
half the missing samples are chosen by selecting from the remaining images with
the highest disagreement loss, regardless of their classes. The other half of the
missing samples are drawn uniformly from the residual image samples. Selective
Query aligns with the intuition of [13] and [11], in which the generated data is
constrained with specific rules at both training and inference time. A detailed
algorithm is provided in supplementary materials.

3.3 Class-Balanced Difficulty-Weighted Replay

We draw inspiration from work that is shown to be promising in the Continual
Learning domain [3], and create a simple yet effective memory replay. This replay
has the following primary features.

1. The replay yields class-balanced samples.
2. When the allocated space for a particular class is saturated, replacement

skews towards easier samples: those with a lower clone training loss.

For each respective class k the attacker discovers, we initialize a separate
class memory bank, denoted as Mk. Samples are stored to Mk if and only if the
victim classifies it as belonging to that class. The maximum capacity of each
memory bank is equal to a fixed total memory size divided by the number of
classes the attacker has discovered. The class memory banks are managed by
a container M which ensures samples are stored correctly and sampled evenly.
During training from replay, an equal number of samples from each respective
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class known to the attacker are sampled from the class memory banks. This
simple improvement reduces class imbalance.

As the memory bank fills up, samples eventually need to be removed to make
space for new ones. We follow inspiration from [3]: using a weighted random
sampling to select samples for replacement. This aims to keep the most valuable
data in storage. We compute the weighting based on the most recent inverse
clone training loss value for each respective sample. For each batch of samples
we update, we apply a transformation where we subtract loss from the maximum
loss value within the batch. In this way, samples that are harder for the clones
to learn are more likely to be retained for longer in the memory bank.

To the best of our knowledge, previous works on data-free model extraction
that employ a memory bank for experience replay rely on simpler methods, such
as a circular buffer for memory storage or random sampling strategies [2, 26],
which do not consider the importance of class balance or the difficulty of samples.

3.4 Loss Functions

The equation below describes the clone training loss LC for clone ci in the HL
setting. K represents the classes we have discovered up to this point of CaBaGE’s
extraction process, and ci (sn)k represents the logit of clone ci on class k for
generated sample sn. Finally, pV is label assigned by querying the victim.

HL : LC = − 1

N

N∑
n=1

log

(
exp(ci (sn)pV )∑
k∈K exp(ci (sn)k)

)
(2)

For SL extraction, the clone training loss is the MSE loss computed between
the pseudo logits of the victim and the clones’ raw logits. Here, we follow DFME’s
approach to obtain the pseudo logits V (sn) of the victim [31].

SL : LC = − 1

N

N∑
n=1

(ci(sn)− V (sn))
2 (3)

CaBaGE’s generator training’s optimization goal follows previous work, in
which the generator jointly optimizes the disagreement loss LD, which aims to
maximize the disagreement between clone models, and the class diversity loss
Ldiv, aiming for a balanced data distribution in the generated data. λ is a hyper-
parameter used as a weighting coefficient for the class diversity loss.

LG = LD + λLdiv (4)

Following previous work [26] and [1], the disagreement loss LD is the standard
deviation of the fixed clone models’ prediction over all previously discovered
classes, and Ldiv is the information entropy of the clones’ prediction.

4 Experimental Setup

To compare with prior work in data-free model extraction, we follow their ex-
perimental configurations. Specifically, we examine two settings, the first from
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IDEAL [36], and the other from DisGUIDE [26]. We denote the settings from
IDEAL, where query budgets are much lower, as the limited-budget setting
(≤ 2M queries ), and the setting from DisGUIDE as the relaxed-budget set-
ting (≥ 8M queries). We perform extraction from the following seven datasets:
MNIST [18], FMNIST [32], SVHN [22], CIFAR-10 [15], CIFAR-100 [15], Tiny
ImageNet [17] and an ImageNet-subset [19]. For each dataset, we extract 2 or 3
victim architectures, dependent on the dataset. The list of model architectures is:
MLP, LeNet [18], AlexNet [16], VGG-16 [29], ResNet-18 [8], and ResNet-34 [8].
We use IDEAL’s published implementations of MLP, LeNet, AlexNet, ResNet-
18, and ResNet-34 architectures [36], and DFME’s published implementation for
VGG-16 [31]. To eliminate any potential biases, we run all extraction techniques
on the same victim models for each setting in which we make comparisons. The
victims and their training details are specified in the supplementary materials.
Evaluation Metric: To compare with prior work in DFME [26, 36], we fo-
cus our evaluation on accuracy. Since researchers are also interested in fidelity
results [12], we refer readers to the supplementals for CaBaGE’s fidelity results.

4.1 Limited-Budget and Relaxed-Budget Setting

In the limited-budget setting, we compare three techniques: IDEAL, DisGUIDE,
and CaBaGE. Following IDEAL’s settings, we use 25K queries for extractions
on MNIST, 100K for FMNIST and SVHN, 250K for CIFAR-10 and ImageNet-
subset, and 2M for CIFAR-100 and Tiny ImageNet. Tab. 1 reports the average
final accuracies obtained by each respective method. On CIFAR-100 and Tiny
ImageNet the clone model architecture is ResNet18, while in all other cases the
clone architecture is congruent to the victim model architecture.

For reproducibility, we use the publicly accessible repositories of IDEAL1

and DisGUIDE2. However, there is a discrepancy between the query budget
definitions in the IDEAL paper [36] and its code base. IDEAL’s code base queries
the victim model with multiple different images, that are augmented versions of
each other, but the IDEAL paper only counts these multiple queries as a single
query. Due to this discrepancy, IDEAL’s extraction experiments query the victim
model multiple times more than the reported query budget in their paper. These
additional queries represent a budget increased by a factor of 2 times for non-
CIFAR or 162 times for CIFAR datasets. To ensure an equitable comparison
in the limited-budget setting, we report reproduced results of IDEAL without
mutating the stored images to make the query budget constraint consistent with
what is described in the IDEAL paper. We denote this query budget adjusted
version of IDEAL as IDEAL∗. The details of this discrepancy and IDEAL∗ are
provided in the supplementary materials.

In the relaxed-budget setting, we compare CaBaGE with DisGUIDE in both
SL and HL extraction on CIFAR-10 and CIFAR-100 datasets. The experiments
follow DisGUIDE’s exact experimental settings, details can be found in [26].

1 https://github.com/SonyResearch/IDEAL/tree/main
2 https://github.com/lin-tan/disguide

https://github.com/SonyResearch/IDEAL/tree/main
https://github.com/lin-tan/disguide
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4.2 Hyper-Parameters

In a realistic setting for DFME, the attacker is only aware of the model architec-
ture they have selected to replicate the target system, as well as the query budget.
Thus, most hyper-parameters should be identical across all experiments. Conse-
quently, we choose to fix the learning rate for clone models with the same archi-
tecture and with the same query budget. We set the learning rate for AlexNet
clones to be fixed at 0.004, VGG-16 clones at 0.01, ResNet18 clones at 0.03, and
ResNet34 clones at 0.1, respectively, for all query budgets. For MLP clones, learn-
ing rates are 0.01 (25K queries) and 0.0125 (100K queries). For LeNet clones,
they are 0.1 (25K queries) and 0.01 (100K queries).

For all experiments, CaBaGE uses a batch size of 250. We use a clone ensem-
ble size of 2, and a generator ensemble size of 8. Within each Generator Training
phase, we train the generator for 3 batches. In the Clone Training phase, Selec-
tive Query selects a batch from 1000 samples to query the victim with, and the
clone models are trained for 1 iteration using the newly queried batch. The clone
model is trained with 12 batches of data sampled from the knowledge replay.
Learning rates are scheduled to drop by 0.3 at 40% and 80% of the total query
budget under the relaxed-budget setting. Learning rate drops were not used in
the limited-query budget setting. Additionally, as the diversity loss weighting
should increase based on the number of discovered classes [26], we dynamically
scale λ during training, varying it approximately inversely with the number of
discovered classes via a simple relation: λ = 4

(10+K) . For all experiments, we
follow DisGUIDE [26], and use a replay size of 1 Million.

5 Results

5.1 Extraction Accuracy

We compare the performance of our method, CaBaGE, with two SOTA data-free
model extraction techniques: DisGUIDE [26] and IDEAL [36]. IDEAL empha-
sizes extraction under stringent query budget constraints, while DisGUIDE aims
at high-performance extraction with a more generous budget. We report the ac-
curacy in extraction settings matching both of these prior papers respectively.

Limited-Budget Setting Tab. 1 shows the extraction results of IDEAL∗,
DisGUIDE, and CaBaGE in terms of final extracted accuracy and 95% confi-
dence interval under the limited-budget setting, described in Sec. 4.1. IDEAL∗ is
the query budget adjusted version of IDEAL, for a fair comparison as described
in Sec. 4.1. For example, when extracting the MLP victim trained on MNIST,
CaBaGE reaches 57.13% accuracy on the test set, outperforms the prior best
extraction result of 14.00% by 43.13%. Consistently, CaBaGE outperforms prior
work on all victims, on any target dataset.

For elementary victims trained on less intricate datasets, such as MNIST
and FMNIST, CaBaGE demonstrates significant performance improvements, im-
proving the final test-set accuracy by an average of 23.00% for AlexNet, 6.27%
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Table 1: Accuracy (%) and 95% confidence interval of clone in various limited-budget
settings. Experiments result for DisGUIDE and CaBaGE are computed over 3 runs.
IDEAL∗’s result are run by a fixed random seed based on the published code. IDEAL∗

is the query budget adjusted version of IDEAL for a fair comparison ( Sec. 4.1).

Dataset Model Victim IDEAL∗ DisGUIDE CaBaGE

MLP 98.25 14.00 11.35 ± 0.00 57.13 ± 4.15
MNIST LeNet 99.27 86.40 91.23 ± 2.01 94.49 ± 0.81

AlexNet 99.35 66.30 18.11 ± 5.23 85.31 ± 0.85

MLP 84.54 19.00 37.53 ± 5.75 74.62 ± 3.15
FMNIST LeNet 90.23 27.80 59.43 ± 2.86 68.72 ± 2.39

AlexNet 92.66 35.20 54.47 ± 5.29 81.45 ± 0.64

VGG-16 94.41 68.35 79.96 ± 3.21 84.10 ± 0.36
SVHN ResNet-18 95.28 72.60 75.83 ± 0.77 78.09 ± 0.84

AlexNet 89.82 67.00 19.39 ± 6.70 76.04 ± 2.42

CIFAR-10 AlexNet 84.76 25.50 24.73 ± 3.23 33.35 ± 1.63
ResNet-34 93.85 20.40 18.05 ± 5.97 26.03 ± 2.58

CIFAR-100 AlexNet 63.38 6.17 24.45 ± 0.38 33.09 ± 0.66
ResNet-34 77.52 7.94 32.65 ± 0.64 43.75 ± 1.75

ImageNet-subset AlexNet 72.96 20.60 18.92 ± 0.91 46.83 ± 3.06
VGG-16 78.53 20.50 31.01 ± 2.09 37.04 ± 7.60

Tiny Imagenet ResNet-34 59.28 4.93 11.87 ± 2.73 15.36 ± 0.64
VGG-16 42.04 4.15 7.87 ± 1.50 11.98 ± 0.64

Table 2: Final clone accuracy comparison with 95% confidence intervals in the relaxed-
budget setting. DisGUIDE [26] results are the paper reported accuracies.

Setting Technique CIFAR-10 CIFAR-100

Victim Clone (%) Victim Clone (%)

Soft Label DisGUIDE 95.54 94.02 ± 0.25 77.52 69.47 ± 0.88
CaBaGE 95.54 94.36 ± 0.05 77.52 75.96 ± 0.25

Hard Label DisGUIDE 95.54 87.93 ± 1.74 77.52 58.72 ± 2.42
CaBaGE 95.54 89.28 ± 0.61 77.52 64.45 ± 0.87

for LeNet, and 40.11% for MLP. More specifically, CaBaGE extracts a LeNet
model trained on MNIST with an averaged final accuracy of 94.49%, which is
very close to the victim model’s accuracy of 99.27%. On slightly more complex
datasets including SVHN and CIFAR-10, CaBaGE also exhibits improvements
over previous SOTA. Extraction on SVHN datasets achieves on average a 5.15%
increase, reaching 79.41%, and extraction on CIFAR-10 achieves on average a
6.74% increase, reaching 29.69%. Similar improvements are also shown in ex-
tracting victim models trained on more challenging datasets. Namely, on the
ImageNet-subset, CIFAR-100, and Tiny ImageNet datasets, we observe mean
improvements of 16.13%, 9.87%, and 3.80% respectively.

Summary: In the limited-budget setting, CaBaGE outperforms both Dis-
GUIDE and IDEAL∗ across all 17 settings, increasing accuracy up to 43.13%.
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Table 3: Mean number of queries (in millions) to reach prior work—DisGUIDE’s
reported final accuracies with respective 95% confidence intervals. Lower is better.

Setting CIFAR-10 CIFAR-100

DisGUIDE CaBaGE DisGUIDE CaBaGE

Soft Label 20M 16.04M ± 0.01M 10M 2.43M ± 0.15M

Hard Label 8M 6.32M ± 0.13M 10M 6.07M ± 1.81M

Relaxed-Budget Setting Tab. 2 compares the final accuracy of CaBaGE on
CIFAR-10 and CIFAR-100 following DisGUIDE configurations in the relaxed-
budget setting for both SL and HL extractions. For SL extractions, when extract-
ing from the ResNet-34 victim trained on CIFAR-100, CaBaGE outperforming
DisGUIDE by 6.49%, achieving a final accuracy of 75.96% on the test set, which
is 97.99 percent of the victim model’s accuracy (77.52%). This underscores that
with a higher query budget, CaBaGE offers highly accurate SL model extrac-
tion, even on more intricate models trained with complex datasets. CaBaGE
also increases the final extracted accuracy on CIFAR-10 by 0.34%. Similarly, in
the HL setting, the test-set accuracies are increased by 1.35% and 5.73% for
extraction processes on CIFAR-10 and CIFAR-100, reaching 89.28% and 64.45%
accuracy respectively. Besides the gains of final accuracy of the extracted mod-
els, CaBaGE also makes the extraction process more stable, i.e., reduces the
fluctuation of results, when the query budget is relaxed.
Summary: Under the relaxed-budget setting, CaBaGE outperforms prior
work on CIFAR-10 and CIFAR-100. In the HL setting, CaBaGE improves
the final test-set accuracy by 1.35% and 5.73%. Our biggest gain is in the
SL setting, where CaBaGE achieves an accuracy improvement of 6.49%,
reaching 97.99% of the victim model’s accuracy on CIFAR-100.

5.2 CaBaGE’s Query Efficiency

We compare the number of queries required for CaBaGE to reach the final
accuracy of the prior work DisGUIDE against its query budgets, and report the
result in Tab. 3. In all extraction settings, CaBaGE shows better query efficiency
compared to DisGUIDE. For SL extraction on CIFAR-100 CaBaGE needs only
2.43 million queries on average to achieve similar accuracy to DisGUIDE’s final
result, with a 95% confidence interval of 0.15 million, reducing the prior standard
by 75.7%. For SL extraction on CIFAR-10 the number of queries needed to reach
prior work’s best is reduced by 3.96 million on average, 19.8% of the total queries.

In the HL settings, CaBaGE reaches the prior SOTA accuracy in 6.32 mil-
lion queries on CIFAR-10 and with 6.07 million queries on CIFAR-100. This
constitutes a reduction in the needed queries by 21% and 39.3%, respectively.
Summary: CaBaGE consistently improves query efficiency in both the
CIFAR-10 and CIFAR-100 datasets under SL and HL settings. Extractions
on the CIFAR-100 dataset, in particular, show a reduction in the number of
required queries in the SL setting by 75.7%.
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5.3 Ablation Study

Table 4: Final Accuracy of CaBaGE and ablation settings shown with 95% confidence
interval. Independent t-tests are used to determine improvement over the baseline
DisGUIDE∗, where statistically significant improvements are highlighted in Blue.

Dataset Model DisGUIDE∗ DisGUIDE∗ DisGUIDE∗
CaBaGE

+CB-DW +CB-DW+GE

MNIST
MLP 11.35 ±0.00 48.58 ±5.73 54.32 ±4.04 54.94 ±3.58
LeNet 94.20 ±0.55 94.02 ±0.88 94.84 ±1.07 95.32 ±0.63
AlexNet 74.10 ±2.11 71.64 ±4.31 82.54 ±3.30 86.08 ±0.94

FMNIST
MLP 42.28 ±4.40 72.80 ±2.85 76.61 ±2.35 74.45 ±3.28
LeNet 69.12 ±1.12 67.10 ±1.83 70.29 ±1.58 68.08 ±1.50
AlexNet 74.66 ±2.09 75.76 ±2.19 78.86 ±1.32 79.63 ±1.48

SVHN
VGG-16 88.37 ±0.87 86.67 ±2.12 83.63 ±1.32 84.14 ±2.09
ResNet-18 76.05 ±1.81 77.87 ±1.52 79.49 ±1.18 78.70 ±0.98
AlexNet 64.01 ±2.40 72.27 ±2.89 72.35 ±4.06 74.46 ±2.19

CIFAR-10 AlexNet 26.25 ±3.45 30.09 ±1.82 35.66 ±1.44 33.23 ±1.04
ResNet-34 22.04 ±2.64 28.78 ±4.10 28.25 ±2.98 26.34 ±2.54

ImageNet-Subset AlexNet 43.11 ±3.17 46.67 ±2.07 46.54 ±2.88 48.54 ±2.68
VGG-16 38.94 ±5.39 27.13 ±4.37 39.57 ±8.13 35.53 ±5.97

We evaluate the individual contribution of Class-Balanced Difficulty-Weighted
Replay (CB-DW), Generator Ensemble (GE), and Selective Query by progres-
sively adding them to the baseline, DisGUIDE∗, which only differs from Dis-
GUIDE by incrementing the replay iteration from 3 to 12 to match CaBaGE’ for
a fair comparison. We report the averaged extraction accuracy with a 95% con-
fidence interval in Tab. 4. Column DisGUIDE∗

+CB-DW represents DisGUIDE∗

with CB-DW. Other columns define similar ablations of our technique or our
full approach. We run each experiment 9 times and evaluate the statistical sig-
nificance using independent t-tests against DisGUIDE∗.

With the inclusion of more components over the baseline method, there
is an increase in the number of settings showing statistically significant im-
provements over the baseline. Column DisGUIDE∗

+CB-DW shows that adding
Class-Balanced Difficulty-Weighted Replay results in four statistically signifi-
cant improvements over the baseline while only adversely affecting one extrac-
tion result. Likewise, Column DisGUIDE∗

+CB-DW+GE shows that Generator
Ensembles with Class-Balanced Difficulty-Weighted Replay further increase the
improved cases to 8 statistically significant improvements. Finally, our compre-
hensive approach, CaBaGE, achieves statistically significant improvement in 10
out of 13 extraction settings, with only one setting where the performance is
reduced, demonstrating the effectiveness of Selective Query.

Summary: Each of the three CaBaGE components, i.e., Class-Balanced
Difficulty-Weighted Replay, Generator Ensemble, and Selective Query, im-
proves model extraction accuracy.
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Table 5: Evaluation of the impact Generator Ensemble Size on computation cost.
Extraction result performed by DisGUIDE∗

+GE following limited-budget setting on
the AlexNet victim trained on CIFAR-10. We run each experiment setting 10 times.

Metric Generator Ensemble Size

1 4 8

Accuracy (%) 21.80±1.96 28.56±2.79 28.01±2.38
Time (seconds) 246.89±3.26 240.71±1.10 249.67±4.93

5.4 GE’s Impact on Computational Cost

We show in Tab. 5 that under a fixed generator training iteration, the increase
in Generator Ensemble size does not lead to a noticeable increase of our imple-
mentation’s runtime. Increasing the generator size from 1 to 4 results in a 6.76%
increase in final accuracy, yet the time required for extraction remains approx-
imately the same. In fact, the time is reduced by 6 seconds, which we believe
is due to system randomness. This evaluation was performed on an NVIDIA
GeForce RTX 2080 Ti with 11 GB of memory and an Intel(R) Xeon(R) Gold
5120 CPU.

6 Conclusion, Limitations, and Future Work

We propose a data-free model extraction approach, CaBaGE, which utilizes a
combination of generator ensemble, class-balanced difficulty-weighted replay, and
selective query. This approach enhances the accuracy and efficiency of model
extraction results. In addition, CaBaGE works in the more strict class-agnostic
setting across seven different datasets and six victim model architectures.

One limitation is that there is no easy way to tune hyperparameters in a
DFME environment. CaBaGE tries to use a robust set of parameters between
experiment settings, varying only model learning rate between clone architec-
tures and query budgets. However, the chosen settings may not generalize to
untested datasets and architectures. Coming up with ways for the attacker to
dynamically verify chosen hyperparameters is a challenging problem that needs
to be solved for real world data-free model extraction to work.

Machine learning is a very broad field and many types of problems exist.
Both prior work and CaBaGE have naturally focused on a set of image data
tasks, in order to be able to compare with one another. It remains to be seen
how well current DFME SOTAs generalize to extracting models trained on class
imbalanced data and non-image data.

In addition, the attackers may have some domain knowledge about the train-
ing data. One promising future work direction is to utilize such domain knowl-
edge effectively to improve mode extraction accuracy and efficiency.
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A Fidelity Results

In the Data-Free setting, prior works generally focus on replicating model perfor-
mance. In this section we show the performance of CaBaGE in terms of fidelity,
i.e. how well the extracted model matches the victim model, as opposed to the
true test label.

(a) Fidelity extraction curve for CIFAR-100 SL.
Orange is the prior SOTA for data-free model ex-
traction in that setting. Blue is CaBaGE

(b) Fidelity extraction curve for CIFAR-100 HL.
Orange is the prior SOTA for data-free model ex-
traction in that setting. Blue is CaBaGE

(c) Fidelity extraction curve for CIFAR-10 SL.
Orange is the prior SOTA for data-free model ex-
traction in that setting. Blue is CaBaGE

(d) Fidelity extraction curve for CIFAR-10 HL.
Orange is the prior SOTA for data-free model ex-
traction in that setting. Blue is CaBaGE

Fig. 2: Fidelity extraction curves for CIFAR-10 and CIFAR-100

Fig. 2 compares the fidelity extraction curves of the prior SOTA with CaBaGE.
In the next section, we present the accuracy curves of the same runs in Fig. 3.
The final fidelity values for these runs can be found in Tab. 6. Subjectively the
accuracy and fidelity results look to be inline with one another, with fidelity
values being higher than accuracy.
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Table 6: Final clone fidelity along with 95% CI. Results from DisGUIDE are from
reproduced runs with their codebase.

Setting Technique CIFAR-10 CIFAR-100

Victim Clone (%) Victim Clone (%)

Soft Label DisGUIDE 100 96.82 ± 0.31 100 77.64 ± 1.04
CaBaGE 100 97.32 ± 0.09 100 89.56 ± 0.19

Hard Label DisGUIDE 100 89.38 ± 1.29 100 63.91 ± 1.94
CaBaGE 100 90.98 ± 0.41 100 70.54 ± 1.02

B Accuracy Training Curves

In section 5.2 we follow prior work in terms of quantifying the queries needed
to reach the prior SOTA accuracy in different settings. Not limited in terms of
space, we offer the reader accuracy training plots here.

The plots in Fig. 3 are in the relaxed budget settings with the exact runs
used to generate the CaBaGE main results compared with reproduced runs of
DisGUIDE with results inline with the numbers reported in the paper.

C Effect of Replay Iteration

DisGUIDE incorporated a circular buffer mechanism for retaining previously
queried samples, in order to optimize the query budget utilization. The paper
suggested an enhancement in performance with increased replay frequencies, a
concept analogous to the frequency of memory bank updates in related litera-
ture [26]. Our analysis presents a more nuanced perspective on this claim. We
evaluated the performance dynamics of DisGUIDE’s replay against our proposed
replay strategy across varying settings in two distinct model extraction scenar-
ios: a multi-layer perceptron on the MNIST dataset and VGG-16 on the SVHN
dataset. Both methods employed the same extraction technique derived from
DisGUIDE, with the replay strategy being the sole variable.

Figure 4 demonstrates the performance trajectories of the two replays as a
function of replay iterations, with the error bars indicating a 95% confidence
interval. The upper chart demonstrates that the performance of CaBaGE’s re-
play consistently exceeds that of DisGUIDE and exhibits a positive correlation
with replay iterations when extracting the MLP victim on MNIST. Conversely,
DisGUIDE’s performance first increases then declines with additional iterations.
In the lower chart, Nemesis replay marginally trails behind DisGUIDE’s replay,
and a uniform decrement in performance for both methods is observed as the
replay iteration count escalates. These findings indicate that the influence of re-
play strategies is not uniform across datasets. It is imperative for future research
in model extraction to leverage experience replay to scrutinize the differential
impacts of replay modalities relative to the victim model and dataset character-
istics.
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(a) Accuracy training curve for CIFAR-100 SL
extraction. Orange is the prior SOTA for data-
free model extraction in that setting. Blue is
CaBaGE

(b) Accuracy training curve for CIFAR-100 HL
extraction. Orange is the prior SOTA for data-
free model extraction in that setting. Blue is
CaBaGE

(c) Accuracy training curve for CIFAR-10 SL ex-
traction. Orange is the prior SOTA for data-free
model extraction in that setting. Blue is CaBaGE

(d) Accuracy training curve for CIFAR-10 HL
extraction. Orange is the prior SoTA for data-free
model extraction in that setting. Blue is CaBaGE

Fig. 3: Accuracy extraction curves for CIFAR-10 and CIFAR-100

(a) MLP extraction on MNIST (b) VGG-16 extraction on FMNIST

Fig. 4: Performance comparison of DisGUIDE’s replay and CaBaGE, with different
replay iterations used
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D Victim Training Details

CIFAR-10 and CIFAR-100 ResNet-34 models were taken from the DFAD paper.
Due to the difficulty in acquiring the exact trained victim models from the

IDEAL paper, new victim models were trained for the purpose of running the
CaBaGE experiments. Aside from the DFAD models, all other victims were
trained with the script provided in the codebase in run_train_teacher.sh

Models were trained via 240 epochs of stochastic gradient descent with a
batch size of 250, momentum of 0.9, and an initial learning rate of 0.1. If the
training run failed (model weights did not converge) the training was repeated
with a smaller initial learning rate, until no such issues occurred. After every
40 epochs the learning rate was divided by 5. From within the training runs,
models were selected to be close to the accuracies reported in the IDEAL paper,
wherever possible.

E Reproducing IDEAL’s result

As described in section 4.1, there is a discrepancy between the IDEAL codebase
and paper. Specifically, IDEAL’s extraction technique queries the victim many
times with augmented versions of generated images. The transformation function
from the codebase is given in the following code snippet:

i f not (" c i f a r " in datase t ) :
s e l f . t rans form = trans forms . Compose (

[
t rans forms . RandomHorizontalFlip ( ) ,
t rans forms . ToTensor ( ) ,

] )
e l s e :

s e l f . t rans form = trans forms . Compose (
[

t rans forms . RandomCrop(32 , padding=4) ,
t rans forms . RandomHorizontalFlip ( ) ,
t rans forms . ToTensor ( ) ,

] )

For non-CIFAR datasets, the horizontally flipped versions of the inputs are
used to query the victim, but only 1 query is counted instead of 2. For CIFAR-10
and CIFAR-100, this is pushed further by also performing a random crop on gen-
erated images with a padding of 4. The random crop function adds padding to
each side of an image and then randomly selects an section to match the dimen-
sions specified by the first parameter. This means that vertically and horizontally
there are 9 different possible outcomes (prepend 1-4 zeros, no change, or append
1-4 zeros). Combined with the horizontal flipping, this gives us 9× 9× 2 = 162
different versions of each generated input, each of which the victim model may
be queried with.
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To remedy this issue, the transform is changed to the simply remove the
transform, which is not mentioned in the paper. The code section in question
after the fix is as follows:

s e l f . t rans form = trans forms . Compose (
[

t rans forms . ToTensor ( )
] )

F Selective Query Specifics

The Selective Query pseudocode can be found in Algorithm 1 Selective Query.

Algorithm 1 Selective Query
Input: S = {Si∈m},m batches of generated images; C(S), Clone ensemble’s pre-
dictions on S; K, discovered classes; N , batch size.
Output: B, selected data
B ← [ ]
Nk ← ⌊NK ⌋ Expected number of samples per class
R← N −K ·Nk Number of missing samples
for k in K do
{S}k ← select images in S with prediction k in C(S)
{Sk}sorted ← sort({S}k): Sort in descending order by corresponding value in

σ(C(S))
if |{S}k| ≥ Nk then

add {Skj}sortedj≤Nk
to B

else
add {Sk}sorted to B
R← R+Nk − |{S}k|

end if
end for
if R > 0 then

S∗sorted = sort({S \B}): Sort by decreasing value in σ(C(S))
add {S∗sorted

i }i≤⌊R
2
⌋ to B

add uniformly sampled samples from remaining to B
end if
return B

G Stability Against Hyper-parameters

We study the impact of hyper-parameters, including the generator ensemble size
|Ge|, and the generator training iterations per victim query giter.
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Fig. 5: Final accuracy comparison for ResNet34 extraction on CIFAR-100 under the
relaxed-budget setting. Method tested is DisGUIDE with only the addition of a gen-
erator ensemble. Effect of varying the ensemble size.

1 2 4 8

62

64

66

68

70

72

74

Generator Training Iteration per Victim Query Iteration β

A
cc

ur
ac

y
(%

)

Effect of Extra Generator Training

HL
SL

Fig. 6: Final accuracy comparison for ResNet34 extraction on CIFAR-100 under the
relaxed-query setting. Generator ensembles’ size is fixed to 16.
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G.1 Effect of Generator Ensemble Size and Training Iterations

We explored the impact of both generator ensemble size and generator
training iterations on the CIFAR-100 dataset, and our experiments results
are encapsulated in Fig. 5 and Fig. 6 respectively. To ensure a fair compar-
ison, our experimental setup solely applies the generator ensemble technique
to DisGUIDE, excluding the integration of Selective Query and class-balanced
difficulty-weighted replay. The configurations mirror the DisGUIDE setup for
CIFAR-100 as detailed in Sec. 5.1 [26].

In experiments for evaluating the generator ensemble size, shown in Fig. 5),
for both SL Setting and HL Setting, the extracted model’s final accuracy gen-
erally improves with an increase in ensemble size, peaking at a size of 8, which
results in 3.48% improvement over base DisGUIDE with a final accuracy of
66.39% . However, expanding the ensemble from 8 to 16 members results in a
marginal decline in performance.

The impact of generator training iterations per victim query iteration are
shown in Fig. 6. In both the HL Setting and the SL Setting, A clear upward
trend is observed with increased training iterations. The increments in accuracy
for each increasing generator training iteration (β) are as follows. For HL: an
increase of 1.87% from β = 1 to β = 2, 0.28% from β = 2 to β = 4, and 1.33%
from β = 4 to β = 8. For SL: an increase of 1.18% from β = 1 to β = 2, 0.85%
from β = 2 to β = 4, and 0.14% from β = 4 to β = 8. The result suggests
that more generator training leads to enhanced performance in both HL and SL
settings. However, similar to the generator size, we can observe the diminishing
returns and it is possible that the increased generator training iterations’ positive
effect on model performance will be reversed beyond a specific threshold.

G.2 Comparison Against Improved Baseline

In Tab. 7, we present a performance comparison between DisGUIDE and CaBaGE
method while eliminating the effect of replay iterations. The experimental con-
figurations remain consistent with those in Tab. 1, except that we increased Dis-
GUIDE’s replay iteration from 3 to 12, and denote this method as DisGUIDE∗.
Based on our findings in Appendix C, we have observed that increasing the re-
play iterations can lead to a boost in the final accuracy of the extracted model,
although the gains diminish over time. To provide a fair comparison between the
two methods, we chose to set DisGUIDE’s replay iterations equal to CaBaGE’s,
and we run all experiments 9 times. The results are shown as mean values of
extracted models’ accuracies, along with standard deviations. Statistical signif-
icance is determined using independent t-tests, and the p value for each test is
recorded (Column p val) with three decimal places.

CaBaGE demonstrates superior performance in most of the configurations.
Setting a significance level at α = 0.05, most results demonstrate statistical
significance. Specifically, CaBaGE outperforms DisGUIDE∗ in 10 out of the 13
configurations. CaBaGE is only outperformed by DisGUIDE∗ while extracting
a VGG-16 model on the SVHN dataset.
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Table 7: Independent t-test comparing CaBaGE (using class-balanced difficulty-
weighted replay) and DisGUIDE (using original replay) under 12 replay iterations in
the setting of various configurations. There are 9 runs for all experiments. accuracy is
shown along with 95% confidence interval.

Dataset Model DisGUIDE∗ CaBaGE p val Better

MLP 11.35±0.00 54.94±3.58 p=0.000 CaBaGE
MNIST LeNet 94.20±0.55 95.32±0.63 p=0.011 CaBaGE

AlexNet 74.10±2.11 86.08±0.94 p=0.000 CaBaGE

MLP 42.28±4.40 74.45±3.28 p=0.000 CaBaGE
FMNIST LeNet 69.12±1.12 68.08±1.50 p=0.246 N/A

AlexNet 74.66±2.09 79.63±1.48 p=0.001 CaBaGE

VGG-16 88.37±0.87 84.14±2.09 p=0.002 DisGUIDE
SVHN ResNet-18 76.05±1.81 78.70±0.98 p=0.016 CaBaGE

AlexNet 64.01±2.40 74.46±2.19 p=0.000 CaBaGE

CIFAR-10 AlexNet 26.25±3.45 33.23±1.04 p=0.002 CaBaGE
ResNet-34 22.04±2.64 26.34±2.54 p=0.021 CaBaGE

ImageNet12
AlexNet 43.11±3.17 48.54±2.68 p=0.012 CaBaGE
VGG-16 38.94±5.39 35.53±5.97 p=0.370 N/A

H Remaining Ablation on Larger Datasets

Table 8: Final Accuracy of CaBaGE and ablation settings shown with 95% confidence
interval. Independent t-tests are used to determine improvement over the baseline
DisGUIDE∗, where statistically significant improvements are highlighted in Blue.

Dataset Model DisGUIDE∗ DisGUIDE∗ DisGUIDE∗
CaBaGE

+CB-DW +CB-DW+GE

CIFAR-100 AlexNet 25.22 ±1.98 25.74 ±2.04 34.68 ±1.30 33.09 ±0.54
ResNet-34 34.71 ±1.28 38.99 ±1.69 43.00 ±0.69 43.75 ±1.75

Tiny ImageNet ResNet-34 13.70 ±0.97 12.15 ±0.60 18.02 ±1.13 15.36 ±0.64
VGG-16 9.68 ±1.19 9.98 ±0.73 13.43 ±1.10 11.98 ±0.64

We show the additional experiments on CIFAR-100 and Tiny-Imagenet for
our ablation on the individual contribution of our novel components in Tab. 8.
All settings are the same as Sec. 5.2 in our paper, except all experiments are run
3 times instead of 9 times on this table due to time constraints. We progressively
add our novel components to the baseline, DisGUIDE∗, and present the ablations
for DisGUIDE∗, DisGUIDE∗

+CB-DW, DisGUIDE∗
+CB-DW+GE and CaBaGE.

When including class-balanced difficulty-weighted replay, the performance
does not differ from the baseline much, which indicates that class-balanced
difficulty-weighted replay has a similar performance compares to the circular
buffer replay used by DisGUIDE∗. Conversely, the integration of GE consis-
tently demonstrates statistically superior results compared to the baseline on
both CIFAR-100 and Tiny-ImageNet, highlighting the robust benefits of GE.
Regarding our comprehensive method, CaBaGE, which also includes SQ, there
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are two settings where it outperforms the baseline. While this may appear less
effective compared to DisGUIDE∗

+CB-DW+GE, it is important to note that the
inclusion of SQ generally leads to a decrease in uncertainty levels, suggesting
that SQ enhances the stability of the extraction results.
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