Deep Reinforcement Learning for Pokemon Battling

Kevin Zhang
Purdue University
zhan4196@purdue.edu

1. Introduction

Games have long been seen as a test for skill and adapta-
tion, for both humans and artificial algorithms. They vary
widely in rule systems and complexity and can serve as
test-beds for development of new algorithms. One such
game, popular with a wide variety of demographics all over
the world, is Pokémon — and more specifically, its system
of battling.

Pokémon is among the largest video game franchises
in the world, with main gameplay involving players acting
as “trainers” leading a team of Pokémon in battle. In a 1v1
Pokémon battle, each player uses up to six Pokémon with
each having a set of 6 statistics and one or two typings.
Each turn, both players selects one of the four moves
to attack the opponent’s active Pokémon or may switch
their active Pokémon for any of their other non-fainted
ones. Once a Pokémon has lost all hitpoints (HP), it is
forcibly switched out and remains unusuable for the rest
of the battle. Pokémon Battling offers a very interesting
combination of strategy, domain knowledge, and luck
which has earned it a wide following for human users, and
can offer a unique challenge for training artificial strategies.

With over 1000 [I] unique Pokémon and a similar
number of moves, plus a variety of methods to change
Pokémon statistics, Pokémon battles represent oppor-
tunities to learn in a very large, high-dimensional state
space. Beyond this, Pokémon Battling features several
different properties which make learning strategies difficult
for machine learning algorithms. The Pokémon battling
environment is multi-agent, where, as a players strategy
evolves during the game, so does the opponents’. Addi-
tionally, unlike previous work in Chess and Go [10, 12],
the environment is only partially observable, with key
opponent characteristics such as attack and defense being
unknown. Furthermore, the environment is stochastic,
with the outcome of certain actions being random, which
contrasts it with the environment of similar work for
Starcraft IT [17] and other such games.

This project is inspired by recent interest in develop-
ing machine learning systems for Pokémon battling, and
was carried out with the aim of building experience in
Reinforcement Learning (RL) techniques to accomplish
such a goal. Different algorithms in RL are analyzed,
then implemented in PyTorch. The agents are trained and
tested in a Pokémon Battling environment which has been
integrated into an OpenAl Gym environment.

2. Related Works

Over the past decade, Reinforcement Learning has fully en-
tered the stage as a third major category of Machine Learn-
ing, contrasting with Supervised and Unsupervised meth-
ods. Within this framework, agents learn a policy to take
actions between states depending on the surrounding envi-
ronment [16]. To capture such information effectively, the
value of a specific state or state-action pairing can be mod-
elled as an intermediary to indirectly choose a best policy.
In other methods, this policy can be directly learned in a
model-free manner. This basic formulation works very well
in modelling games, with well-defined states and fully un-
derstood transition dynamics.

2.1. Deep Reinforcement Learning

With the advent of Deep Learning and neural networks,
their usage in RL has enabled a host of developments
towards developing human-level artificial agents. These
methods employ neural networks to approximate the value
functions, and/or the policy itself.

* Policy gradient methods aim to directly learn the optimal
function from state to action. The REINFORCE algo-
rithm [19, 20] is taken as representative for deep policy-
gradient methods, and uses a neural network to estimate
a stochastic policy- represented by 7y (al|s). This network
is trained via gradient ascent by Monte-Carlo sampling of
trajectories and their rewards.

* Bowling [2] introduces GIGA-WoLF, combining the
principles of “Win or Lose Fast” and gradient ascent
methods. Intuitively, it aims to learn at a faster rate when
“losing” as compared to when it is winning. As a policy-
gradient based method, GIGA-WoLF keeps track of two

policies, sampling trajectories from one but adjusting its
learning based on both. The usage of two policy networks
allows for faster updates when the action selection policy
receives lower reward compared to the secondary policy.
Bowling further proves two key properties: zero expected
regret, and convergence in self-play. GIGA-WoLF is im-
plemented to the author’s best abilities, with comparison
against vanilla REINFORCE policy gradient methods.

* Deep Q-Learning, in comparison with policy based
methods, models only the State-Action Value function
Qo(s,a) using a neural network. A policy is implicitly
determined by maximizing reward over all possible ac-
tions at a state. This deterministic greedy policy however,
hinders exploration of potential rewards in the environ-
ment; and thus an epsilon-greedy exploration strategy is
employed. Mnih et al. [7] discuss empirical methods for
improving convergence and results of Deep Q-Learning,
including the use of a target Q-network and replay train-
ing for stability. These empirical improvements are in-
cluded in the implementation of DQN used in this project.

¢ Actor-Critic methods combine the use of neural networks
to estimate both value functions Q and policy m. The
policy (actor) network is used to select actions while the
value (critic) network “critiques” the actor. Both are
trained via Monte-Carlo rollouts, matching policy gra-
dient methods. The inclusion of the critic’s predictions
serves to stabilize training of the policy by subtraction of
a baseline. Async Advantage Actor Critic (A3C) [8] and
Generalized Advantage Estimation (GAE) [11] offer two
variations of this architecture, and are referenced in im-
plementation of the two methods.

2.2. Other Pokémon Systems

Pokémon battles have multiple properties which make them
attractive for exploration [6], lending to the application of
Deep RL techniques in studying Pokémon battling.

e Kalose et al. [5] offer information and results on their
framework for a basic Q-Learning system using epsilon-
greedy and softmax exploration techniques. They offer
a good starting place for state information of Pokémon
and move definition as well as game-state. The agents
trained with the methods are compared against random
agents and their results show that their agents achieve su-
periority by win-rate. Such an implementation offers a
good starting point for methods and comparison against a
similar student project.

e Simoes et al. [13] offer a short introduction to distributed
versions of GIGA and Weighted Policy Learner (WPL)
method. They then implement and test the two train-
ing methods for Pokémon battling. Their results indicate
agents trained via these methods to be generally effective,
and offer analysis of strategies which are learned. How-
ever, the authors train agents with randomized Pokémon

attributes in nearly deterministic setting (No status, no
accuracy < 100%); so an extension of their methods to
“real” Pokémon battling scenarios will allow for compar-
ison with other agents.

* Finally, Hu ef al. present PokeLLMon [4] and detail their
adaptation of LLM systems to general strategy games.
Most information is focused on the difficulties of this
adaptation, including difficulties with memory and hal-
lucinations, which includes analysis of situations where
the agent fails. These failures offer insight into potential
areas for development in reward or embedding structure.
The code is open source on GitHub, allowing for human
users to play against what the authors claim is human par-
ity skill. This approach is the only one of the three ex-
amined to compete in a realistic Pokémon battle without
deterministic constraints.

2.3. Related Methods

The ultimate goal of the project was to develop novel meth-
ods examining few shot learning. However, due to time con-
straints, this was never realized.

* The authors of [18] give an introduction and several ex-
amples of few-shot learning techniques in basic OpenAl
gym environments and will offer a good starting place for
further reading into the subject for future work.

* Sohn et al. [15] develop a meta-learning technique for
subtask graphs introduces several possible areas for fu-
ture review, and can offer inspiration for development of
other novel techniques.

3. Approach

Poke-env [9] offers an open source battling environment
that has been pre-implemented. It offers support for con-
necting to a Pokemon Showdown backend [14], allowing
for local training and potentially access to other players on
online servers. It is modified for integration with implemen-
tations of RL methods using PyTorch. Based on the intro-
ducing papers, the four different methods- REINFORCE,
DQN, WoLF-GIGA, and A2C- are reproduced in PyTorch
and tested in the environment. Algorithm 1 demonstrates
the shared training loop algorithm.

The following subsections describe the formulation of the
environment for Reinforcement Learning agents, as well as
important derivation and implementation details for the four
selected Deep RL methods which are tested in the envi-
ronment. The code can be found in a GitHub repository
at https://github.com/InvariantProgram/
PurdueCS587Proj

3.1. Environment

Subclassing poke-env’s implementation of an OpenAl Gym
[3] environment allows for implementations of custom

https://github.com/InvariantProgram/PurdueCS587Proj
https://github.com/InvariantProgram/PurdueCS587Proj

Algorithm 1 Training Loop

Input: Initialized Agent A with (potentially implicit)
policy 74
Input: Environment M
Output: Trained agent A
s < first state from M
for step < n_steps do
Select action a ~ 4 (s)
Execute a in M
Observe reward 7, new state s’, and terminal d
if A is Monte-Carlo (Policy Gradient) then
A stores (s, a, r,log P(a),d) in memory
else
A stores (s, a,r, s, d) in memory
end if
5+ s
Train A from memory
if d then
s < first state from M
end if
end for

> Terminal State

state embedding and reward functions by modification of
the proper functions.

For this experiment a simple embedding and reward
structure is used. Given a state in a Pokémon battle, the
state is embedded into a vector of length 10. The first four
indices of this vector are the base powers of each of the four
possible moves for the agent’s active Pokémon scaled by a
factor of 1/100. If a move does not have a base power- such
as a status inflicting move, or Protect, its power is encoded
as -1. This leaves the indices in the range [-1, 3], as the
highest possible base power for a move is 300. The next
four indices encode the effectiveness of the corresponding
move’s type against the opposing team’s active Pokémon.
These indices take values {0, 0.25, 0.5, 1, 2, 4}. The last
two indices store the number of remaining non-fainted
Pokémon each player has, scaled by a factor of 1/6, such
that a full team is encoded to a value of 1 and a player that
has just lost has a team value of 0.

The reward calculation is similarly simple. For each
Pokémon on the agent’s team, an hp value modification
is multiplied onto its health and added to the reward. If
the Pokémon has fainted, a fainted value modification is
subtracted from the reward. If it has any status conditions,
a status value modification is subtracted from the reward. A
mirrored operation is then carried out using the opponent’s
team, subtracting their hitpoint scores and adding their
fainted and reward scores. Finally, if the agent has won the
game it receives a victory reward. If it has lost, it instead

loses this victory reward. The parameters used are detailed
in Table 1.

Parameter Value
hp 1.0
fainted 2.0
status 0.0
victory 30.0

Table 1. Reward parameters

From these values it can be seen that the major driving
force is maintaining a total hitpoint advantage over the
opponent- if you maintain more hitpoints than the opponent
at every point in the game, it is impossible to lose. Victory
then serves more of a role in adding a signal to potentially
exploratory moves with more delayed effects.

Poke-env also includes the implementation of three

different baseline agents. They can be labeled as Random-

Player, MaxBasePowerPlayer, and SimpleHeuristicPlayer

with the following behaviors:

* RandomPlayer: Randomly selects out of up to 9 valid
actions: the four moves of its active Pokémon, and any
valid switch to a non-fainted ally Pokémon.

* MaxBasePowerPlayer: Always chooses the move with
highest base power if possible. If unable to do so, selects
arandom ally switch.

» SimpleHeuristicPlayer: Implements a heuristic-based
human-like strategy. It will choose to set up entry hazards
(which cause damage or bad effects to opponents pas-
sively as they switch in) if possible. It will also choose to
boost its own active Pokémon if the opponent’s Pokémon
has a poor match-up into it. Additionally, it will se-
lect moves based on an estimate taking into account both
move power, effectiveness, and the physical/special cat-
egory of the move. These rules combine to create a
formidable opponent, even for novice human players.

3.2. REINFORCE

As described in the related works section, vanilla policy-
gradient REINFORCE [19, 20] uses a neural network with
parameters 6 to estimate a stochastic policy:

mo(s) = P(a € Als; 0) (1)

Then the reward .J () of a policy parameterized by 6 can be
expressed in form of trajectories 7 as:

J(0) =) P(r:0)R(1) =Ernr) [R(1)] ()

Where 7 describes the sequence of states, with an associated
probability of happening based on the policy 7’s decisions.

It’s total reward, the summation of all rewards received dur-
ing this trajectory is labeled R(7). Then calculating its gra-
dient produces:

VoJ(0) =V Z?T(T; O)R(T)

=Y R(r)Ver(r;0)
= Z R(r)m(T; G)V;E:_(Té)e) 3

= " (R(7)Vglog(r;0)) w(r:0)
=Eyry [R(T) Vg log 74 (T)]

Further, expanding 7y (7)-

=

mo(7) = P(s0) mo(ae]st) P(Se41]5¢, ar)

“4)

t=1

T
Voylogmg(T) = Zve log 7 (a¢|st)

t=1

Allows for the full Policy Gradient Theorem,

VoJ(0) =E;n,

T
Z Gtveﬁe(aﬂst)])

t=1

Where G, defines the reward of a partial trajectory i.e. the
sum of all (potentially discounted) rewards following a spe-
cific state within a trajectory. This formulation is readily
approximated via Monte-Carlo sampling, and leads to Al-
gorithm 2 describing the implementation of memory train-
ing REINFORCE in code.

Algorithm 2 REINFORCE memory training

Input: Memory M of (s, a,r,log P(a), d) tuples
Input: Agent’s policy my(s) and discount rate
Output: One step optimization of agent A

if final tuple in M has d = True then

L+0
for t in length M do
if t is final timestep then
Gt — Ty
else
Gy <=1 +7Ge
end if
L+ L+ G;-logP(a)
end for

Use PyTorch autograd with loss — L to update 6
Flush memory M > autograd minimizes
end if

3.3. GIGA-WoLF

GIGA-WoLF [2] acts as a modification to vanilla policy-
gradient (GIGA) methods. As described previously, the al-
gorithm keeps track of two policy estimators x and z. Ac-
tions are taken by the stochastic policy z, while z serves
to improve update steps. The update rules are implemented
according to the Bowling’s three equations

1. A surrogate policy x’ is generated by projection [21]
of an unconstrained modification of z’s policy at state
s¢ back to a distribution. A gradient update step is then
taken for x towards z’.

2. 2’ is similarly generated from z’s policy at s;. z then
also takes a gradient step towards 2z’ but at 1/3rd the step
size. Then, a final step size is calculated, taking a value
of 1 unless upperbounded by a small step-size taken by
z.

3. z is then updated towards the updated z based on the
step-size calculated in step 2.

The requirement that a reward be known for a state, and
formulation as a modification to policy-gradient methods
led to this author’s update step occurring at the end of ev-
ery episode, as in REINFORCE. The implementation of the
modified update step is described in psueocode in Algo-
rithm 3.

Algorithm 3 GIGA-WoLF memory training

Input: Memory M of (s, a,r,log P(a),d) tuples
Input: Agent’s action policy 7, (s), auxiliary policy
7.(s), and discount rate -y
Output: One step optimization of agent A
if final tuple in M has d = True then
for tin length M do
G, as calculated in REINFORCE training
a < onehot(ay) - log P(a) - Gt
x, 2 wi(8e), m2(5¢t)
' p(z+a) > _p projection in code [13]
L ||l2" = xly
Use PyTorch autograd with loss L to update 7,
z' < p(z+a/3)
L |2~ 2l
Use PyTorch autograd with loss L to update 7,
2" 2" — 7, (st), me(st)

§ < min (1 A==zl)

eI
L+§-|2"—2"|h
Use PyTorch autograd with loss L to update 7,
end for
Flush memory M
end if

3.4. Advantage Actor Critic

One issue which policy-gradient methods face is high vari-
ance in training. Monte-Carlo estimates for the expectation
are very noisy and so can cause much headache in conver-
gence for policy gradient based methods. One solution is
the usage of a baseline [19]. From a Monte-Carlo estima-
tion with baseline:

VoJ(0) ~ - S Valogma(r) (R (<) = 8) (6)
=1

With an additional term which is the Monte-Carlo approxi-
mation of:

Ermn, [Vologm(7;0)b] = Z w(1;0)Voglogn(r;0)b

T

A (Z P(T)> @
—5.0 i

Factoring b out is valid so long as it does not depend on
action in log probability, keeping the gradient estimate
unbiased.

One such baseline which does not depend on action
is the value of the state V;(s). Thus, Advantage Actor
Critic uses an estimate of the () function to estimate this
via the Bellman Equation:

Qr(s,a) =7+ ’YVﬂ(SI) (®)

Thus, this @) estimator serves as a critic to the policy net-
works actor. The policy seeks to gain ground over the value
network’s estimation, by maximizing the advantage: the ac-
tual realized reward of the trajectory minus the () estima-
tor’s reward estimate. This leads to the implementation for
this project in Algorithm 4.

3.5. Deep Q Network

Q-Learning [16] seeks to estimate the optimal value of each
state action pair, which can then be exploited by selecting
the action with optimal action-value at each state. Directly
using our estimator (QQy(s, a) leads to an update step using
the Bellman equations:

Qtarget(sv a) = R(Sv a, sl) + A/ mE}X Q@ (slv a/) (9)

Gradient update methods may then be used on @y with
this loss formulation to optimize 6 in an online manner.
Previous policy based methods produced stochastic policies
allowing for exploration even as a policy stabilized. In
Q-Learning methods, an e-greedy policy is used during
training, taking a random action with probability € to

Algorithm 4 A2C memory training

Input: Memory M of (s, a,r,log P(a), d) tuples
Input: Agent’s policy 7y(s), value estimator @, (s), and
discount rate y
Output: One step optimization of agent A
if final tuple in M has d = True then
Ly, L, <+ 0,0
for For t in length M do
G as calculated in REINFORCE training
v — Qu(st,ar) > Q. (s¢) indexed at ay
advantage < G; — vy > detach v; here
L, < L, + advantage
Lv — L»U + |Gt — Ut|
end for
Use PyTorch autograd with loss —L,, to update ¢
Use PyTorch autograd with loss —L,, to update w
Flush memory M
end if

Algorithm 5 DQN memory training

Input: Memory M of (s, a,r,s’,d) tuples
Input: Agent’s Action-Value estimator Qg (s), target es-
timator Qe (s), discount rate -y, exploration rate ¢, target
net update rate target_update
Output: One step optimization of agent A
if M has more than batch_size samples then
L<+0
Sample a batch of transitions from M
for (s,a, s’,r,d) in Sample do
q < QG (8) (l)
q + max, Qg (s',a’)
if d = True then

> Qg(s) indexed at a
> Detach ¢’

target <— r
else
target < r + vq'
end if
L < L + |target — ¢|
end for

Use PyTorch autograd with loss L to update Qg
if target_update steps occurred since last update then

0«0 > Copy to target
end if
Anneal e towards Agent’s minimum €

end if

explore the action space, while focusing more on actions
that are deemed “good.”

However, Mnih et al. [7] note two key considerations.
First, the estimator Qg is updating towards a moving target-
in essence “chasing its own tail.” They propose addition

of a target estimator (Jy- to better stabilize training. This
better prevents changes in (Qy from finding vastly different
maximization policy. In practice, they find that using a
frozen version of (Qy functions well with little overhead.
The second consideration is that rewards are very highly
correlated in a single trajectory. Producing a single bril-
liance in a string of mistakes leading to a loss may cause
the algorithm to in fact disprefer such a good move. They
propose the usage of a replay buffer in training to break
this correlation and show good results. A fixed-length
circularly replaced memory is used in this project, and the
pseudocode implementation of the method is described in
Algorithm 5.

4. Results

For simplicity due to time constraints, simple training
experiments were implemented and ran. Environment
details for all experiments can be found in Sec. 3.1. The
environment embedding and reward structure is held
constant for each training method. Only the training
opponent is varied for different experiment types. Training
results in the environment will include randomization, as
the training environment is Generation 5 Random Battles.
So, in addition to the stochastic nature of transitions due to
chance in moves themselves, each battle will be generated
with each agent having different Pokémon. All experiments
were trained over 10,000 environment steps, with each
training run encompassing approximately 350 games.

Additionally, each method was ran with off-the-shelf
hyperparameters. All methods share the same ~ value of
0.99. All networks are created with approximately the same
architecture: A fully connected network using ReLU acti-
vation and a single hidden layer of size 128, though output
sizes differ, producing slightly different architectures for
value @) networks and policy 7 networks. Additionally, any
optimizer is a default Torch SGD optimizer. Policy gradient
methods were evaluated as stochastic policies, sampling
actions from a categorical distribution based on output, and
did not use other hyperparameters. DQN methods used a
circularly replaced replay buffer of size 1000 and batch
size 32 and ran target updates every 100 gradient steps.
The exploration rate € was annealed at a rate of 1/2000
from initial value 0.9 to minimum value 0.1, with updates
occurring on gradient steps.

There were a total of 10 different experiments ran.
The first eight are discussed first: Agents trained with each
of the four methods (REINFORCE, GIGA-WoLF, DQN,
A2C) trained against a RandomPlayer baseline agent, as
well as agents trained via each of the four methods against a
MaxPowerPlayer baseline agent. Each experiment type was
ran 5 times, where after training for 10,000 environment

steps, the trained agent was evaluated in the Generation
5 Random Battle format over 50 games against the three
baseline agents introduced in Sec. 3.1. The win-rates
against these baseline agents are used to discuss the results
of the four reinforcement learning strategies and are shown
in Sec. 4.

The results clearly show DQN’s superiority in train-
ing method under these conditions. It is the only method
to consistently beat the RandomPlayer in both environment
scenarios. It also shows significantly stronger performance
than all three other methods in all but 1 format- evaluation
against the Heuristic agent when trained against a random
player. The DQN agents also outperform Kalose et al. [5],
reaching a win-rate against random agents of approximately
90% over around 350 games, compared to 70% over 20,000
games.

We examine one such evaluation game between the
best performing experiment type: an agent trained with
DQN against a MaxPowerPlayer. The agents choices shed
insight the difficulties of training for Pokémon battling, and
into the results of training.

Krookodile 8 (50

AgentPlayer 1

& o

Figure 1. Turn 29: Krookodile (ground, dark type) has just been
sent in against Carnivine (grass type)

Krookodile # 150
I

'&%
&
Falt

Figure 2. Turn 46: Krookodile and Carnivine remain on the field
for 17 turns, with minimal action.

Figures 1 and 2 demonstrate the limitations of a low state
space embedding. Over 16 turns on the field, Krookodile
repeatedly selected what it believed to be its strongest

move against Carnivine, Earthquake. @~ However, Car-
nivine’s ability- Levitate- made it immune, meaning it
took no damage (and instead healed over time with its
leftovers item). Meanwhile, the SimpleHeuristics agent
recognized Carnivine’s typing of grass was advantageous
into Krookodile’s typing of ground, and chose to keep
Carnivine in. This cycle was only broken on the next turn
when Earthquake ran out of PP (A limitation which is rarely
felt by human players), and a random switch was made by
the trained agent. This also was the reason Carnivine was
doing minimal damage- as its grass type move had already
been drained of PP beforehand.

This example, and many others like it, demonstrate
that the DQN agent had very successfully learned to
repeatedly select the move at its disposal with highest
base power, acting almost exactly as the MaxPowerPlayer.
This then suggests that the policy-gradient methods:
REINFORCE, GIGA-WoLF, and A2C, were unable to
capture this simple principle. Simoes et al. [13] report
success with GIGA. However, they train using over 1.3
million environment steps, and modify the algorithm to use
Actor-Critic methods. They also experiment in a simplified
environment, using only 5 basic types (Fire, Water, Grass,
Normal, Fighting) and a deterministic set of moves.

Thus, it is clear that hyperparameter tuning, and in-
creased training time are necessary to achieve good results
with policy-gradient methods, while DQN seemed to be
effective almost out-of-the-box.

However, beyond this, DQN methods seem to have a
win-rate slightly lower against MaxBasePower- while you
would expect a win-rate of 50% if their strengths were
exactly the same. This is likely due to some artifacts of
strategy learning- which can be seen in Figures 3 and 4.

Farfetch'd 8

AgentPlayer 1

Figure 3. Turn 48: FarFetch’d very effectively selects Brave Bird
(flying) into Carnivine (grass).

The trained agent’s FarFetch’d initially selects Brave Bird
against the opponent’s Carnivine, hitting for very big
damage. However, once the opponent switched in Seviper,
the agent instead chose to repeatedly use Quick Attack.

ed Quick Attack!
er lost 19% of ts healtht)

Figure 4. Turns 49 and 50: FarFetch’d opts to use Quick Attack
(normal) into Seviper (poison). A quick check shows that Seviper
may be faster than FarFetch’d.

An experienced human player may also make such a
choice: Carnivine has lower speed than FarFetch’d, so we
would easily be able to select our strongest move. However,
Seviper may potentially be faster than FarFetch’d; and in
this situation, it may be beneficial to simply guarantee a hit
via Quick Attack, which (almost) always hits first. We can
see here that the DQN agent may in fact be learning some
rudimentary strategy, causing it to falter in some situations
against the MaxBasePowerPlayer, but occasionally make
interesting plays in other situations.

Finally, the final two experiments involve training the
DQN agent against a SimpleHeuristicsPlayer, and swap-
ping out the optimizer to a default Torch Adam optimizer,
while still training against the MaxBasePower agent. The
results are shown below in Fig. 6. They show that generally,
the agent trained with SGD performs better as compared to
that trained with Adam: this likely relates to the moving
target issue of DQN training. The usage of a target network
only alleviates this problem, instead of completely solving
it. This moving target then makes Adam’s momentum
potentially problematic. We can additionally see that the
agents trained against the MaxPower player performed
significantly better than those trained against the Simple-
Heuristics agent. This demonstrates further the importance
of the opponent in training, and the author hypothesizes
that the very strong nature of the opponent reduced reward
signals- all towards loss; and hindered learning.

5. Conclusion

Through this project, four different Reinforcement Learn-
ing training algorithms: REINFORCE, GIGA-WOoLF,
DQN, and A2C have been implemented and tested on
a realistic Pokémon battling environment. While a very
simple embedding and reward structure was used, agents
trained via DQN were able to obtain strong superiority over
Random Agents, achieving a win-rate of approximately

MaxPlayer training environment results
1.0

N REINFORCE I GIGA B DON . A2C

0.8 4

0.6 4

Win-rate

0.4 4

0.2 4

0_03?.024).048
0

0.0 -

Agent-Heuristic Agent-Max

Agent-Rand

(a) Results when trained against a MaxPowerPlayer baseline.

Win-rate

RandPlayer training environment results
1.0

N REINFORCE I GIGA N DON [___ivis 0.896

Agent-Heuristic

Agent-Max Agent-Rand

(b) Results when trained against a RandomPlayer baseline.

Figure 5. Final win-rate results for a sample size of n=5 runs. Error bars show sample standard deviation. The x-axis corresponds with the
opponent in testing, the two graphs shows the results of models trained against different baseline models. The dashed line shows a win-rate

of 0.5 for approximate parity in strength.

Win-rate
Experiment Agent-Rand Agent-Max Agent-Heuristic
MaxPower DQN | 0.896 £0.036 0.416 £0.095 0.136 & 0.0385
Heuristic DQN 0.66 +0.105 0.276 £0.056 0.072 £ 0.023
Adam DQN 0.712 £0.107 0.344 £0.0385 0.152 £ 0.048

Figure 6. Final win-rate results for a sample size of n=5 runs. Adam DQN is trained with an Adam optimizer against the MaxPower

baseline agent. Errors show sample standard deviation.

90% over 10,000 environment steps corresponding to
roughly 350 games. The results similarly reflect the DQN
training method to be most effective in the setting.

An analysis of the difference in performance is of-
fered, however, the work is hindered by limited scope
in hyperparameter exploration, and in low training time;
which are both necessary parts of successful Reinforcement
Learning, especially in policy gradient methods.

In future work, the author hopes to further explore
RL algorithms in this space and develop more complex em-
bedding and reward schemes for testing. The environment
and motivation may also serve to produce a new testbed
in developing multi-agent learning methods in Pokémon
battling.

References

[1] List of pokemon. Web: https://pokemondb.net/
pokedex/national,2024. 1

[2] Michael Bowling. Convergence and no-regret in multia-
gent learning. In Proceedings of the 17th International
Conference on Neural Information Processing Systems, page
209-216, Cambridge, MA, USA, 2004. MIT Press. 1, 4

[3] Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas
Schneider, John Schulman, Jie Tang, and Wojciech Zaremba.
Openai gym. arXiv preprint arXiv:1606.01540, 2016. 2

[4] Sihao Hu, Tiansheng Huang, and Ling Liu. Pokellmon: A
human-parity agent for pokémon battles with large language

models. 2

[5S] Akshay Kalose, Kris Kaya, and Alvin Kim. Op-
timal battle strategy in pokemon using rein-
forcement learning. Web: https://web. stanford.
edu/class/aa228/reports/2018/finall51. pdf, 2018. 2,
6

[6] Scott Lee and Julian Togelius. Showdown ai competition. In
2017 IEEE Conference on Computational Intelligence and
Games (CIG), pages 191-198. IEEE, 2017. 2

[7]1 Volodymyr Mnih, Koray Kavukcuoglu, David Silver, An-
drei A Rusu, Joel Veness, Marc G Bellemare, Alex Graves,
Martin Riedmiller, Andreas K Fidjeland, Georg Ostro-
vski, Stig Petersen, Charles Beattie, Amir Sadik, loannis
Antonoglou, Helen King, Dharshan Kumaran, Daan Wier-
stra, Shane Legg, and Demis Hassabis. Human-level control
through deep reinforcement learning. Nature, 518, 2015. 2,
5

[8] Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza,
Alex Graves, Tim Harley, Timothy P. Lillicrap, David Silver,
and Koray Kavukcuoglu. Asynchronous methods for deep
reinforcement learning. In Proceedings of the 33rd Interna-

https://pokemondb.net/pokedex/national
https://pokemondb.net/pokedex/national

(9]

(10]

(11]

(12]

(13]

[14]

[15]

[16]

(17]

(18]

[19]

(20]

tional Conference on International Conference on Machine
Learning - Volume 48, page 1928-1937. JMLR.org, 2016. 2
Haris Sahovic. poke-env. https://github.com/
hsahovic/poke—env, 2024. 2

Julian Schrittwieser, Ioannis Antonoglou, Thomas Hubert,
Karen Simonyan, Laurent Sifre, Simon Schmitt, Arthur
Guez, Edward Lockhart, Demis Hassabis, Thore Graepel,
Timothy Lillicrap, and David Silver. Mastering atari, go,
chess and shogi by planning with a learned model. Nature,
588, 2020. 1

John Schulman, Philipp Moritz, Sergey Levine, Michael 1.
Jordan, and P. Abbeel. High-dimensional continuous
control using generalized advantage estimation. CoRR,
abs/1506.02438, 2015. 2

David Silver, Julian Schrittwieser, Karen Simonyan, ioannis
Antonoglou, Aja Huang, Arthur Guez, Thomas Hubert, Lu-
cas baker, Matthew Lai, Adrian bolton, Yutian chen, Timothy
Lillicrap, Fan Hui, Laurent Sifre, George van den Driessche,
Thore Graepel, and Demis Hassabis. Mastering the game
of go without human knowledge. Nature Publishing Group,
550, 2017. 1

David Simdes, Simao Reis, Nuno Lau, and Luis Paulo Reis.
Competitive deep reinforcement learning over a pokémon
battling simulator. In 2020 IEEE International Conference
on Autonomous Robot Systems and Competitions (ICARSC),
pages 4045, 2020. 2,4, 7

Smogon. https : / / github . com / smogon /
pokemon—-showdown, 2023. 2

Sungryull Sohn, Hyunjae Woo, Jongwook Choi, and
Honglak Lee. Meta reinforcement learning with autonomous
inference of subtask dependencies. 2020. 2

Richard S. Sutton and Andrew G. Barto. Reinforcement
learning: An introduction. [EEE Trans. Neural Networks,
9:1054-1054, 1998. 1, 5

Oriol Vinyals, Igor Babuschkin, Wojciech M Czarnecki,
Michaél Mathieu, Andrew Dudzik, Junyoung Chung,
David H Choi, Richard Powell, Timo Ewalds, Petko
Georgiev, Junhyuk Oh, Dan Horgan, Manuel Kroiss, Ivo
Danihelka, Aja Huang, Laurent Sifre, Trevor Cai, John P
Agapiou, Max Jaderberg, Alexander S Vezhnevets, Rémi
Leblond, Tobias Pohlen, Valentin Dalibard, David Budden,
Yury Sulsky, James Molloy, Tom L Paine, Caglar Gulcehre,
Ziyu Wang, Tobias Pfaff, Yuhuai Wu, Roman Ring, Dani
Yogatama, Dario Wiinsch, Katrina McKinney, Oliver Smith,
Tom Schaul, Timothy Lillicrap, Koray Kavukcuoglu, Demis
Hassabis, Chris Apps, and David Silver. Grandmaster level
in starcraft ii using multi-agent reinforcement learning. Na-
ture, 575, 2019. 1

Zhechao Wang, Qiming Fu, Jianping Chen, Yunzhe Wang,
You Lu, and Hongjie Wu. Reinforcement learning in few-
shot scenarios: A survey. J. Grid Comput., 21(2), 2023. 2
Ronald J. Williams. Simple statistical gradient-following al-
gorithms for connectionist reinforcement learning. Mach.
Learn., 8(3—4):229-256, 1992. 1, 3,5

Junzi Zhang, Jongho Kim, Brendan O’donoghue, and
Stephen Boyd. Sample efficient reinforcement learning with
reinforce. 1,3

[21] Martin Zinkevich. Online convex programming and gener-

alized infinitesimal gradient ascent. page 928-935. AAAI
Press, 2003. 4

https://github.com/hsahovic/poke-env
https://github.com/hsahovic/poke-env
https://github.com/smogon/pokemon-showdown
https://github.com/smogon/pokemon-showdown

	. Introduction
	. Related Works
	. Deep Reinforcement Learning
	. Other Pokémon Systems
	. Related Methods

	. Approach
	. Environment
	. REINFORCE
	. GIGA-WoLF
	. Advantage Actor Critic
	. Deep Q Network

	. Results
	. Conclusion

