DEEP REINFORCEMENT
LEARNING FOR POKEMON
BATTLING

Kevin Zhang




Battling Environment

Pokemon Battles offer unique challenges

» Stochastic: Accuracy, Status, Crits

» Partially-Observable: Stats, abilities,
m O Ve S Prers A nutrient-draining attack. The user's HP is restored by half

the damage taken by the target.

- The opposing Pokémon are attacked with a spray of harsh acid.
This may also lower their Sp. Def stats.

Acid Armor The user alters its cellular structure to liquefy itself. sharply

= Very large state/search space: | —— R
Embedding of above

harshly lowers the target's Sp. Def stat

The user nimbly strikes the target. If the user is not holding

Acrobatics X . X
an item, this attack inflicts massive damage.

The user applies pressure to stress points, sharply boosting
one of its or its allies’ stats.

Acupressure
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. The user confounds the target with speed, then slashes. This
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= Additionally- Information may be
- A vortex of air is shot at the farget to inflict damage. Critical

entirely known by “testing” during = L
battle




Pokemon Showdown Environment

Turning Pokemon into an OpenAl Gym environment

= Pokemon Showdown offers an open-
source method for generating and
conducting battles

= Poke-Environment acts as an
interface to Python for this data

= Select an action at each state, and
use each turn as a transition

* Follow Gymnasium'’s specification

* Integrate Agents trained using Pytorch
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Training Design

There are many options for training methodology

= Algorithm-
« Optimization Method: DQN, PPO, GIGAB, WPL, etc.

* Opponent Design: Baseline, Selfplay, etc.

worker thre running

Algorithm 1:

Input: Globally, target network update period 7, on-line and target Q-networks,
on-line and target policy networks, on-line and target average policy network
weights, exploration rate ¢, and maximum iterations 7Tiy. Locally, on-line Q,
policy and av policy networks.

.
= |nformation Structure- e B e N

Sample initial state
" repeat
s Execute random action with probability €, otherwise execute action

* Embedding huge information space I o

Compute Q-network targets with target Q-network

% Compute policy networks’ targets with GIGA-WoLF's update equations
N Compute loss of local on-line Q, policy, and average policy networks
10: Accumulate gradients by minimizing the loss

" until terminal state

12 Update global on-line networks weights with the accumulated gradients of

.
| R r D n local on-line networks
W I = 13 Synchronize global target networks as copies of global on-line networks

every T time-steps
14: end for
Output: A converged Q-network to approximate the value function as Q(s, a, 0),
and a converged policy network to approximate the policy function as
v(s,a,0,)

Competitive Deep Reinforcement Learning over a Pokémon Battling Simulator
(Simoes et.al)




Deep Reinforcement Learning

Q Networks

» Reinforcement Learning is based on the Bellman Equations

Ve(S) = Ex [Re41 + Ya(St+1) | St = §]

qﬂ'(sj 3) — Eﬂ- [Rf+l _l_ f)qﬂ-(St_{_]_-. Ar+1) ‘ St — S, At o a]

= Storing these mappings is difficult: Learn them with a neural network

* State -> Q-values for each action

= Deep Q Network (DQN) - Train a NN to select actions via argmax

* Improvements such as Replay and Target networks improve stability

Human Level Control through Deep Reinforcement Learning
(Mnih et.al)




Strategies

After integrating with environment, test:

= Algorithms:
* DAQN, and improvements (n-step learning, priority replay)
+ GIGAe, WPL

» Embeddings and Reward:
* Naive: Only take into account power & hp
« Hand Designed: Take into account stats of bench and opponent

* Future- Reward Network

= Opponent
« Random & MaxPower Baseline
« Selfplay




Results

Initial Results-

= DQN with Random and MaxPower Baseline: 5 runs

» Training over 10,000 env steps

Training against Max Training against Rand
Agent-

Agent-Rand |Agent-Max |Agent-Heuristicl/Agent-Rand [Agent-Max  |Heuristic
0.9 0.38 0.1 0.58 0.2 0.02
0.94 0.4 0.12) 0.82 0.22] 0.04
0.84 0.44 0.14 0.76 0.38 0.06)
0.9 0.56 0.12) 0.64 0.26 0.06
0.9 0.3 0.2 0.7 0.22) 0.06)
0.896 0.416 0.136 0.7 0.256 0.048
0.035777088 0.095289034) 0.038470768] 0.09486833| 0.072663608 0.017888544

= Beating similar student project’s performance

~65% - 70% : Kalose et. al.
https://web.stanford.edu/class/aa228/reports/2018/final151.pdf




Results
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(a) Results when trained against a MaxPowerPlayer baseline.

RandPlayer training environment results
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(b} Results when trained against a RandomPlayer baseline.

Figure 5. Final win-rale resulls lor a sample size ol n=5 runs. Error bars show sample standard deviation. The x-axis corresponds with the
opponent in lesting, the iwo graphs shows the resulis ol models rained against different baseline models. The dashed hine shows a win-rale

ol (1.5 [or approximale parily in strength.
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Figure 6. Final win-rate results [or a sample size of n=5 runs. Adam DON s trained with an Adam optimizer against the MaxPower

bascline agenl. Errors show sample standard deviation.




Future Work

Directions for this Project

= Simple:

* Develop Embeddings & Reward

* Implement other algorithms/improvements (Rainbow is all you need)

* Hyperparameter tuning
= Advanced:

* Reward network
* Develop novel training algorithms

* Potentially tackle IL/BC or Few-shot

(a) Few-shot

Figure 1: Prototypical Networks in the few-shot and zero-shot scenaric ft: Few-shot prototypes

¢y, are computed as the mean of embedded support examples for e; lass. Right: Zero-shot

prototypes ¢y are produced by embedding class meta-data vy. In either case, embedded query points
via a 50

are classified oftmax over distances 1o class prototypes: pa(y = k|x) o exp(—d(fg(x), ;).




	Slide 1: Deep Reinforcement Learning for Pokemon Battling
	Slide 2: Battling Environment
	Slide 3: Pokemon Showdown Environment
	Slide 4: Training Design
	Slide 5: Deep Reinforcement Learning
	Slide 6: Strategies
	Slide 7: Results
	Slide 8: Results
	Slide 9: Future Work

