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ABSTRACT

Fixing bugs in code is a time-consuming endeavor. Automatic Pro-
gram Repair (APR) seeks to autonomously fix bugs present in source
code through patch generation. Recently, the application of neural
networks and deep learning techniques, including neural machine
translation, to this field has yielded good results, achieving state-of-
the-art rates for fixes on the Defects4j and QuixBugs benchmarks.
Ensemble techniques have been used to improve the learning prop-
erties of these models and achieve better results. However, a sys-
tematic measurement of the effectiveness of different ensemble
methods has not been carried out. Partitioning of the dataset for
training with bagging was selected as a simple and comparable
ensemble method. Clustering of the bug type via human catego-
rization and clustering via the encoder hidden state output of a
pre-trained model were compared with random divisions to split the
training data for ensemble models. This study then compared the
results of these different ensemble methods with the same model
design on the QuixBugs benchmark to determine their relative
effectiveness. It was found that models trained on randomly parti-
tioned data outperformed models trained on data clustered by both
human categorization and machine embeddings, fixing 25 bugs
on the QuixBugs benchmark as compared to 20 each for the two
clustering methods. Further conclusions and observations about
the performance of each approach, as well as recommendations for
further approaches in ensemble techniques will be provided based
on the comparison and analysis of results for these methods.
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1 INTRODUCTION

Fixing bugs manually can add many hours to development time.
Automatic program repair (APR) can offer fixes to drastically reduce
this debugging time and improve the health of devices operating
over the internet of things [8, 12]. Early contributions to this field,
such as GenProg [7] and Nopol [24] as well as its extension in
DynaMoth [5] employ simple algorithmic or mutation-based fix
patterns, with Nopol and DynaMoth limiting their fixes to even
specific types of bugs [6]. Recently, however, deep learning and
neural networks have produced a shift in the design of APR meth-
ods, with these learning-based models achieving state-of-the art
results on the Defects4j and QuixBugs benchmarks. Recursive neu-
ral networks and LSTM models have enabled sequence-to-sequence
learning as well as its use in neural machine translation via encoder-
decoder models trained on massive datasets [20]. SequenceR [5]
makes direct use of this process, introducing a translation process
from a buggy line of code to a patch, but not achieving results better
than pattern-based fixes. DLFix [11] looks to expand the context
awareness of the model, using a multi-layered system using the
abstract syntax tree to encapsulate both the buggy line and its sur-
rounding context. Recoder [26] transfers the learning process to
one of edits, using a novel provider-decider architecture to generate
more correct and effective changes. RewardRepair [25] modifies the
loss function in training to promote generation of changes in code
which compile, are similar to developer-written code, and which is
robust. These methods have used developments in computing to
begin to apply the human intuition for solving problems in code,
separating the processes of understanding the context of a buggy
line, and of learning to produce fixed, compiling code with different
metrics.

The use of ensemble methods in the training and development
of deep learning models continues the trend of mimicking human
learning, trying to encapsulate the idea of the wisdom of the crowd
[17]. CoCoNuT [13] uses modified CNN based NMT models with
ensemble learning techniques to encapsulate context and bug in-
formation more effectively. CURE [10] expands on CoCoNuT’s
architecture, further introducing a “programming language” model,
adapted from the GPT large-scale pretrained NMT model to better
capture symbols in the program and improve search space. In gen-
eral, advancements in deep learning have allowed for incremental
improvements by adjusting philosophy, architecture, or other de-
tails to improve the bug-fixing capabilities of deep learning-based
APR techniques.

An additional direction, which has not been explored much, is
the method of training. Ensemble techniques offer a fairly simple
way to improve the performance of models by potentially learning
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a better representation, while improving computability and gener-
ality [17]. Its use allows for a more diverse solution strategy with
minimal overhead on the experimentalist’s part. Betten et al. find
that ensembles of local models trained via data clustering outper-
form global models [3], noting that this advantage depends on the
clustering method and properties of the model. Furthermore, they
work with linear regression models, with different convergence
properties as compared to neural networks. Work done by Partridge
[14] and Sharkey [18] can be generally separated into ensemble via
variation of initialization weights, variation of network hyperpa-
rameters, variation of network type, and variation of training data.
They find that variation of network type among ensemble methods
is most effective, with variation of training data for the ensemble
models being next most effective. Different network architectures
and design for use in automatic program repair are still actively
developed, and many require a different set of inputs with different
tagging of data to be properly trained. Variation of data usage for
ensemble methods allows for usage of the same training method-
ology within a model and offers a widely applicable and general
approach towards improving the performance of existing and fu-
ture techniques. The benefits and drawbacks, then, of ensemble
training based upon different methods for partitioning of the data
set are important concepts to be addressed.

2 APPROACH

The APR model used is based on a tree-decoder architecture, oper-
ating directly on the abstract syntax tree (AST) level. The function
in which the bug is located is first transformed into an AST by static
analysis tools, which also locate the buggy line- all of which is stan-
dard information given to current APR techniques [12], [13]. These
pieces are combined to produce an AST representation of the buggy
function, including the buggy index and buggy node- the location
of the node representing the line where the bug occurs, and the
classification of that node itself. The context AST and buggy index
are transformed into a fixed length representation via an encoder
before being decoded into a transformed AST to be reconstructed
into Java source code. To gather data for training of the model, Java
programs were scraped from GitHub and transformed into abstract
syntax trees via javalang [21] and JavaParser [19]. In selecting the
data, commits were scraped for information (“fix”, “patch”) to select
buggy source code and correct fixed code. This data was then par-
titioned via different methods discussed hereafter to produce the
variations in training data for training of an ensemble of methods.
The models were then used to produce fixes on the QuixBugs Java
bugs collection as a benchmark to compare their effectiveness with
the same transformation into AST used as in producing the training
data. A total of approximately 450,000 buggy functions and their
appropriate fixes were collected and transformed into ASTs to act
as the full training dataset.

2.1 Clustering Methods

To produce a fair comparison of the different partitioning methods,
each method of partitioning was used to generate four different
sets of training data. The training data, collected from patches
scraped from GitHub focused on replacements and adjustments
to code to produce fixes. However, some classes of bug require
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the addition of new lines and statements to properly fix. A fifth
additional identical model was then added to each of the methods
to account for this. Models were coded and trained via the version
1.4.0 PyTorch [2] framework with CUDA 10.0 support. The general
partitioning process is detailed in Figure 1.

\
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Figure 1: Overview of partitioning methods: Categorization
used human selected categories on the buggy origin while
Clustering used clustering methods on vectorized embed-
dings of the buggy source code.

Heuristic Categorization: Intuitively, it would be expected that
clustering and division of the training data to train separate models
would produce better results with different models specializing
across a spread of different cases for the data. Human determined
patterns in bug-type are therefore a potential way to divide the
data. Through this process, the type of bug was determined via the
type of node which was the root of the buggy subtree- found by
the buggy index across all nodes.

The categories were selected based on the patterns observed
through human developer experience to be necessary in fixing vari-
ous types of bugs. The category names are italicized to reference for
further use in the paper. Statement- buggy nodes categorized in the
AST as statements, including assignment, instantiation, and method
invocations represented a first class. Return- buggy nodes identi-
fied as return statements formed this second category. If/While-
as bugs are often within the condition of if and while statements,
this category consisted of datum where the parent of the buggy
node in the AST was classified as an if or while statement. Mixed-
a final miscellaneous group was selected as a combination of the
remaining data.

The number of training data within each category was not equal,
and to better match convergence, the models were trained with
varying iterations over their datasets. The number of iterations
were selected for simplicity- multiples of five- and for similar vali-
dation scores. The If/while and Return models trained for twenty
epochs across their smaller datasets. The model operating on the
Statement category was trained over fifteen epochs and had the
largest amount of data, but converged more slowly, likely due to
the disparate nature of examples covered by nodes expressed via
StatementExpression in JavaParser AST representation. The Mixed
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Table 1: Partitioned dataset sizes. The combined number of
training data which the clustering ensemble models were
trained on is significantly less than the number on which
the other two ensembles trained.

Ensemble Approach  Dataset  Size
Random All ~113,000

Categorization If/While 47324
Return 47899
Statement 252070
Mixed 106497
Clustering* 0 135847

1 92256

2 67086

3 45870

category was posited to be composed of disparate bugs felt to be
more difficult to fix, and so was trained over ten epochs.

Clustering via Embedding: Much work has been done in the
field of software engineering to automatically classify and cluster
source code programs. These methods often focus on invariants
within the code through dynamic analysis [4, 9, 16, 23], a process
far too computationally expensive and time consuming for APR
techniques. Additionally, these approaches are usually tailored to
analysis for massive open online courses on coding, analyzing
source code written to solve the same problem. This specificity of
code structure is in stark contrast to the wide variety of code struc-
tures and problems which automatic program repair faces. Input
buggy functions, acting as context, were therefore embedded into
vectorized representations by the final hidden state output of the
version 4.10.0 T5EncoderModel [1], borrowing from the increasing
use case of large pre-trained neural networks. The vectorized repre-
sentation of each piece of training data was then padded to produce
a fixed length representation and clustered via the K-means method,
implemented by the Scikit learn library [15], with hyperparameter
of four clusters.

Similar to the categorization by human recognized bug-types,
the distribution of training data for the clusters was not even. A
similar process for selecting the amount of training epochs was
used as in the heuristic categorization ensemble training, namely
for roundness of number and for similar convergence on validation.
Then, models with data from cluster-0 and cluster-1 were trained
over ten epochs, while the model trained on cluster-2 was trained
over fifteen, and the model trained on cluster-3 trained over twenty.

Comparisons: Cross comparisons of the clusters produced by
the three methods shows no significant overlap in the clusters
produced as measured by a chi-squared test for independence. These
three methods, therefore, represent clearly distinct division of the
data and offer insight into the impacts on performance of these
differences.

2.2 Patch Generation and Validation

Once all ensemble models had been trained, patch generation and
validation was composed of three steps. First, the inference from
2024-12-02 04:19. Page 3 of 1-6.
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each model on the benchmark bugs produced replacement AST-
subtrees. These patches were generated node by node via a beam-
search method with beam size of 1000, with each patch additionally
receiving a score representing the model’s confidence in the patch
being a correct fix. Second, a reranking process mixed the top two
results from each model into the reranked top ten, before letting
other patches settle in based on their score from the respective gen-
erating model. Third, moving downwards in rank on the reranked
list, each patch AST was translated into source code and the re-
sulting patch was evaluated by the bug test cases. Once a plausible
patch was found- one which passed all test cases passing before
and one additional non-passing case- the validation ended, and
that patch was selected as a fixing patch. Finally, returned plausible
patches were manually checked and considered correct only if they
were semantically equivalent to the developer patches.

3 EVALUATION AND RESULTS

On the QuixBugs benchmark of 39 bugs, the ensemble model trained
on randomly partitioned data outperformed the ensemble models
trained with data split via the other two methods- machine cluster-
ing and type categorization. The first was able to successfully rank
and offer a fixing patch for 25 bugs out of the thirty-nine, while
the latter two ensemble models were only able to successfully offer
fixes for 19 bugs. All three models solve 17 common bugs, with
each pair of ensemble models solving one additional bug which the
third was unable to. The random model, performing the best, solved
an additional 6 bugs which were not solved by either of the other
models. Table 2 details which bugs were solved by which models.
With the same training data and model design, the three methods
provided very similar fixes, and can be seen to have solved nearly
the same set of bugs. However, they can be seen to be differentiated
in the fixes which they offer, as well as in operation- which can be
seen through analysis of their varying attention maps to different
information over the bugs within the benchmark. These results
indicate that ensemble via the division of training data can have a
significant impact on the final performance of the resulting model
on APR tasks. Broad questions based on the significant difference
in performance between the random ensemble models and the two
clustering methods are addressed within the Discussion section of
this paper.

3.1 Generation Differences

The different fixing patches offered in response to the QuixBugs
LEVENSTHEIN bug (represented as QuixBugs ID 17), offers a good
example of the differences in produced fixes. Figure 3 demonstrates
that all three ensemble models were able to offer patches which
correctly fixed the program, but with different patches. The cluster
ensemble model produces a fix which matches the human developer-
written fix. On the other hand, the random and category ensemble
models produce fixes which are semantically equivalent to the
correct patch but are not quite as elegant.

Similarly, the fixing patches produced to solve the bug present
in the QuixBugs FINDINSORTED benchmark bug show that the
differences in patch generation also extend to the scoring and rank-
ing process. Figure 3 shows the category and clustering ensemble
models fix the bug with an additional line proposed by the insertion
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Table 2: Fixed Bug IDs. Quixbug IDs were determined by their order from top to bottom appearing on the QuixBugs GitHub
page (https://github.com/jkoppel/QuixBugs/tree/master/correct_java_programs), starting with ID 1 for BITCOUNT and ending

at ID 39 WRAP

Fixing Ensemble Approaches Bug IDs
Random Only 15, 19, 28, 35, 37, 38
Random and Clustering 39
Random and Categorization 20
Clustering and Categorization 23

All Approaches

1,2,3,5,6,7,9,11, 12, 14, 17, 24, 25, 27, 29, 33, 34

Figure 2: Number of bugs in sets by which models were able
to correctly patch

model, producing a semantically equivalent fix in the bug’s context,
while the random ensemble model offers the proper replacement
fix.

3.2 Attention Analysis

Determining why neural networks offer the results that they do
is a very difficult process and is not fully understood. However,
attention mappings can potentially offer insight into the inner
workings of the network. Comparisons of these attention mappings
for the different models within the ensembles, then, can shed some
light on some of the differences in model generation. Figure 4 shows
a comparison of the attentions in generating the patching sequence
over both context and the buggy nodes for BITCOUNT, the first
bug in the QuixBugs benchmark, and is generally representative
of the attention maps of other bugs within the benchmark in the
context of the following points.

Model Specificity: Analyzing the attention from the generated
nodes towards the buggy sequence shows a strong pattern- the

GQuixBug L

cat(e) {
=oring(l), sarges.subsering(l))

QuixBug FIND_IN_SORTED

else 3f (x > are[mid]} { }else

- revorn bimseaven(arr,x,mid,end)s T
} else {

Produced Fixes

T Random:

Produced Fixes

else iF (source.charAt(@) == target.chart{@) {
+ zemsem 0 - £ . carges ing (1))

} else {

} e Catagory,

else iF (source

Categery and Cluser harat(@) == target.charAt(@) {
+ mewml* i . argen. ing (1))

} else {

elie 1F (x > arr(mia]) {

evurn binsearch(srs,x,mid,end); Clustering
slse IF (source.charAt(2) == targst.charAt(8) {
< xetum ing(t), varges

} else {

Figure 3: Fixing patches generated by the different ensemble
methods for bugs within the QuixBugs benchmark.

return and statement category ensemble models have generally
lower attention values to the beginning of the buggy sequence.
This generally shows that those models have learned the beginning
of the sequence is unimportant, instead shifting attention later in
the buggy sequence. This suggests that the model specialized into
the bug category which it was trained on, as the first node is what
was used to define the bugs which these models trained on. This
is in contrast to the if/while and mixed category models which
maintain similar or slightly higher focuses as compared to both
the return and statement category models, as well as the baseline
attention of the random general models.

Context Attention: Analyzing the attention from the gener-
ated nodes towards the whole context function given to the model
showed that all models had lower attention values for the surround-
ing context, focusing almost entirely on the buggy nodes anyways.
With the low solution rate for more complex bugs, this attention
map suggests that improvements for attention and focus on sur-
rounding context should be sought for and explored.

3.3 Category Ablation

An ablative study on the category ensemble models was carried out
to discover insights into the relative performances of the different
models within the ensemble. For each bug within the QuixBug
benchmark, the reranking step was carried out with only the cat-
egory which the bug would be ascribed to if it were within the
training data. For both the normal reranking process involving
patches generated by all models, as well as the reranking includ-
ing only the patches generated by the matching category model;
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Figure 4: Various attentions for Random and Categorization
models

Table 3: Ranking of perfect match patch. Category Rank
denotes the ranking of the patch when only patches from
the category which matched the bug were considered, while
All Rank denotes the rank when patches from all category
models were considered.

Bug ID & Type Category Rank All Rank
1-Statement 0 0
2-1f/While 669 1187
3-Mixed 10 54
6-1f/While 27 10
9-Return N/A 484
11-Statement 5 25
12-Return N/A 70
14-If 6 13
17-Return N/A 2834
20-Statement 0 0
23-Statement 3 15
24-1f/While 1 3
27-1f/While 0 0
29-Statement 192 881
33-Mixed N/A 109

this process was also only carried out for plausible matches which
perfectly matched the nodes within the correct, developer-written
solution for simplicity’s sake. If the model performed well, the rank-
ing of the matching patch should be lower when considering only
patches generated by the model as compared to patches gathered
from all models within the ensemble. As can be seen in Table 3, the
return category model generally performed worse relative to other
models, as many fixes on return type bugs within the benchmark
were offered not by the return type model, but by other models in-
stead. This large variation in performance across the models within
the ensemble trained on categorized data likely partially explains
the entire ensemble’s worse performance as compared to the en-
semble trained on randomly partitioned data and produces more
2024-12-02 04:19. Page 5 of 1-6.
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questions which could be valid areas of further study to be further
expanded upon within the Discussion section.

4 DISCUSSION
4.1 Results Significance

Human coding often focuses on decomposition of the problem and
searching for patterns as main points in programming strategy [?
]. With the random ensemble model outperforming both machine
and human based clustering techniques, results from this experi-
ment suggest that general domain knowledge is more important
than specific patterns in fixing bugs within code, contrary to the
prevailing methodology for teaching code to new students. With a
significant different in performance between the random ensemble
models and the two clustering ensemble methods, the reason for
this disparity is a pressing question.

There are multiple potential explanations which can invite fur-
ther exploration into the subject of data portioning for ensemble
in learning-based APR techniques. First, unbalanced training data
produced by the training data produced one or two stronger models
and two or three weaker models, with the increase in strength in
specific categories or clusters unable to outweigh the decrease in
performance in others. This is supported by the analysis of category
rankings of perfect matching patches, but could be representative
of an underlying issue, where specific bug types are much more
represented in training data and in practice as compared to others.
Second, the clustering performed within this experiment is poor.
This is certainly a possibility, and better classification of bug type
deserves further exploration. Perhaps more interesting is that the
earlier prognosis is true: general bug-fixing knowledge is better
than more information about a specific bug type. This would then
place more focus on the distillation of coding syntax and semantics
into APR models and the role of context in generating fixes, as
compared to the buggy line.

Related to the varying performance of categorization models,
the use of more training epochs was implemented in an attempt to
mitigate the differences in training data size, but results showed that
the return category model performed relatively poorly compared
to the other type-categorization models. With the validation score
used as a comparison metric to match the learning progress of the
models and its failure in this case, as well as concerns about the
distribution of bugs in training data versus that which needs to be
analyzed in benchmarks and use-cases, it seems that APR methods
are also in need of a better metric to determine convergence.

4.2 Limitations

As can be seen from the comparison of clusters within the Methods
section, bugs in the machine clustering process resulted in those
ensemble models being trained overall on less data, which has a
negative impact on the training process and final result. However,
we hypothesize that the re-introduction of the lost training data will
not close the approximately 25% increase in solved bugs which is
the difference between the random and machine clustered ensemble
performances on the QuixBugs benchmark.

Additionally, the QuixBugs benchmark is a very small bench-
mark, composed only of 39 very simple bugs. Thus, the results on
this benchmark are not guaranteed to be generalizable. As a future
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extension of this work, the application of these models to the much
larger and more comprehensive Defects4j Java bugs benchmark
may change observed patterns and will increase the generalizability
of the combined results

5 CONCLUSION

A brief foray into the systematic testing of ensemble approaches
using data partitioning techniques is presented. With randomly
partitioned data performing best, we tentatively hypothesize that
general domain knowledge is more important than specific cate-
gorical bug type data in the realm of learning-based approaches for
Automatic Program Repair. Comparisons of model performances
and characteristics also allow us to characterize thoughts and di-
rections for future research into training methodology for APR
models, especially in the development of better metrics for de-
termining convergence, due to the difficulties of using validation
score with potential drift between testing set data and real-world
applications.
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